저항이란 말 그대로 전기의 흐름을 방해하는 부품

Posted by 노구라
2011. 11. 11. 08:41 기술지식/반도체전자전기

저항이란 말 그대로 전기의 흐름을 방해하는 부품입니다. 즉, 전기의 흐름에 '저항(Resist)'한다는 의미에서 나온 단어입니다. 저항은 전기회로 안에서 전기의 흐름을 제한하여 회로 안에서의 전류(또는 전압)의 크기를 바꿉니다. 전류 또는 전압의 크기를 바꾼다는 말은 저항을 통과한 전기의 흐름에서 전압 또는 전류의 크기가 바뀐다는 것을 의미합니다. 저항 자체가 제한하는 것은 전기의 흐름 즉, 전류이지만 그 결과로 저항을 통과하면 전압이 떨어지는 결과를 가져옵니다. 이때 저항과 전압과 전류의 관계는 가장 기본적인 전기 공식인 V=I x R로 표시할 수 있으며 저항의 크기 단위는 Ω으로 표시하고 오옴(ohm)으로 읽습니다. 실제 회로에서 사용되는 저항의 범위는 0 Ω에서 수M(메가) Ω에 이르기 까지 다양합니다.

- -----
[저항의 단위와 표시 기호]
부품종류 회로 기호 알파벳 약호 단위
저항 R Ω (ohm)

:: 저항의 계산
회로 안에서 저항값은 전기와 저항의 기본 법칙인 다음 식에 의해서 결정됩니다.

이때 저항의 단위인 Ω은 1V, 1A의 전기가 회로의 저항을 1Ω이라고 합니다. 위의 식은 오옴(ohm)의 법칙이라 불리우는 식으로 전기의 세계를 지배하는 가장 중요한 법칙을 표현하고 있습니다.
따라서, 전기가 흐르는 회로는 모든 회로는 오옴의 법칙에 따르며 사용할 각 회로에서 사용되는 저항의 크기, 전압, 전류의 크기 역시 위의 식으로 계산됩니다.

 
심화 오옴의 법칙과 오옴
심화 발광 다이오드를 켤 때의 저항 값 계산
심화 저항의 직렬연결과 병렬 연결

저항에 전류가 흐르면 전압이 감소하며 이때 감소한 전압의 크기만큼 저항은 전력을 소모합니다. 이때 저항이 소모하는 전력은 다음과 같이 계산할 수 있습니다.

즉, 1V의 전압으로 1A의 전류가 흐르는 회로에 1 Ω의 저항이 들어있다면 그 저항은 1W의 전력을 소비하고 있는 것입니다. 이 소비전력은 대부분 열로 소비되기 때문에 많은 전력을 소비하는 저항의 경우에는 별도로 방열판을 달기도 하며 저항 자체가 금속 방열판 안에 내장되어 있는 경우도 있습니다.

심화 저항과 정격 전력


:: 저항의 회로도 기호
전기 회로를 표시하는 회로도에서 저항은 아래와 같은 기호로 표시됩니다.

--[회로도에서 저항의 표시 기호]
명칭 회로도기호 설명
저항 고정값을 갖는 저항기를 말하며회로도나 부품 목록에서는 기호 R로 표시합니다.
가변저항 저항 값이 변하는 가변저항이며 표시된 용량은 가변 범위의 최대 저항값입니다.
어레이저항(Array Resistor)네트워크 저항(Network Resistor 1개의 패키지에 저항이 여러 개 들어있는 부품입니다.
서미스터(Thermistor) 온도에 따라 저항 값이 변하는 저항의 일종입니다.
배리스터(Varistor) 전압에 따라 저항 값이 변하는 저항의 일종입니다.

* 무유도 저항이란 저항에 코일의 유도성분(H)이 포함되지 않는 저항을 말합니다.
* 서미스터와 배리스터는 회로상의 역할은 저항이지만 온도 변화와 전압 변화에 따라 저항 값이 변화하는 특별한 저항입니다.
사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

저항의 분류와 특성

Posted by 노구라
2011. 11. 11. 08:40 기술지식/반도체전자전기

저항은 사용된 재료와 제조 방법, 형태 등에 따라 다양한 종류가 있으며 전자산업이 발전함에 따라 계속 새로운 형태의 저항들이 개발되고 있습니다.
:: 저항의 분류

구분 일반 명칭 영문표기
고정값 저항기 탄소계 탄소피막저항기 Carbon Film Resistor
솔리드 저항기 Solid ResistorCarbon Composite Resistor
금속계 금속필름 저항기
Metal Film Resistor
산화금속피막 저항기 Metal Oxide Film Resistor
메탈글래즈 저항기
Metal Glaze Resistor
휴즈형 저항기
Fusible Resistor
권선형 권선형 저항기
Wire Wound Resistor
권선형 무유도 저항기
Non-inductive Wire Wound Resistor
전력형 시멘트 저항기
Cement Wire Wound Resistor
메탈클래드 저항기
Metal Clad Resistor
후막형 후막 칩 저항기
Thick Film Chip Resistorp
후막 칩 어레이
Thick Film Chip Array
후막 네트? 저항기
Thick Film Resistor Network
후막칩 네트웍 저항기
Thick Film Chip Resistor Network
박막형 박막 칩 저항기
Thin Film Chip Resistor
기타 특수형 PTC 서미스터
PTC Thermistor
NTC 서미스터
NTC Thermistor
배리스터
Varistor
가변 저항기 탄소피막형 가변저항기
Carbon Film Variable Resistor
후막형 가변저항기
Thick Film Variable Resistor
코일형 가변저항기
Wire Wound Variable Resistor
반고정 저항기
Trimmer
포텐시오메타 Potentiometor

--* 위의 분류는 현재 전자산업에서 일반적으로 사용되는 분류 및 용어입니다.
----따라서, 각 업체마다 자사의 생산품에 대한 표기와 명칭이 조금씩 다를 수 있습니다.
:: 저항의 특성 및 규격
저항의 규격은 저항 값과 허용 전력 이외에도 사용 온도 범위, 오차 등으로 구분됩니다.
다음은 일반적인 저항의 특성 규격에 대한 항목입니다.
  1) 저항값
해당 저항기의 저항 값을 Ω(ohm) 단위로 표시합니다. 이 값은 오차범위 안에서의 대표 값을 말하므로 공칭 저항 값이라고 부르기도 합니다. 저항값은 저항기의 표면에 컬러코드로 표시되어 있거나 숫자로 표시되어 있기도 합니다. 저항값을 표시할 때는 kΩ(1,000Ω), MΩ(1,000,000Ω)과 같은 단위를 함께 사용하기도 합니다.
  2) 사용온도
저항에서 소비하는 전력은 열에너지로 바뀌므로 많은 전류를 흐르는 저항의 경우에는 상당한 온도 상승이 있습니다. 대부분의 저항은 허용전력 이내에서 사용한다면 그 범위 안에서 저항 자체가 발생시키는 열에너지에 의한 온도 상승에 견딜 수 있도록 만들어집니다. 그러나, 통풍에 의한 냉각이 잘 이루어지지 않거나 외부 환경에 의하여 허용치 이상으로 온도가 상승하면 저항을 이 파괴되는 경우가 있습니다.
그러므로, 저항을 사용할 때는 회로의 주변 온도에 따라 저항의 허용 온도를 중요하게 고려하여야 합니다. 저항을 기판에 납땜을 할 때에도 같은 이유로 주의하여야 하며 저항에 따라서는 납땜시의 가열 시간까지 업체에서 세세하게 지정하는 경우도 있습니다.
또한 너무 낮은 온도에서 사용하는 경우에도 저항의 외피인 피막에 균열이 일어나거나 하는 경우가 있으므로 냉동 장치의 내부와 같이 너무 낮은 온도에서 사용하는 경우 역시 사용 가능 온도를 확인하여야 합니다. 하지만 저항은 다른 전자부품들에 비래 상당히 열에 강한 부품에 속하므로 일상적인 사용에서라면 크게 문제를 일으키지는 않습니다.

저항의 종류에 따른 대략의 사용 온도 범위는 다음과 같습니다.

저항의 종류 최고 사용온도(℃)
탄소피막 저항기 155
솔리드 저항기 125
금속피막 고정저항기(Metal Clad 155 ~ 175
산화금속피막 저항기
235
권선형 저항기 270, 350
후막형 저항기 125
  3) 온도계수 (TCR: Temperature Coefficient of Resistance)
모든 물질은 온도에 따라 전기 저항 값이 변화 하며 저항기 역시 온도에 따라 저항 값이 변합니다. 온도계수는 이 변화를 나타내기 위한 값입니다. 재료의 저항 값은 온도의 증감에 따라 저항값이 직선적으로 변화하는 경우와 비직선적으로 변화하는 경우가 있으며 직선 적으로 변화하는 경우에는 저항온도계수(TCR)를 사용하고, 비직선적으로 변화하는 경우에는 측정하는 온도를 정해 그 사이의 저항치변화율(%)로 표시합니다.

간단히 예를 들어 온도계수가 300ppm인 저항의 경우에 온도가 20℃ 증가하면 저항 값이 실제 0.6% 증가하게
됩니다. 따라서, 아주 정밀한 회로를 구성하여야 할 경우에는 저항의 온도계수도 함께 고려하여야 합니다.
  4) 정격전력
사용온도 범위에서 연속동작 상태로 사용 할 수 있는 최대 전력을 나타냅니다. 그러나 실제 사용에서 정격 전력은 실제 회로 설계값에서 충분한 여유를 두는 것이 일반적입니다. 그 이유는 정격전력 이상에서 저항이 지속적으로 사용되면 과도한 열이 발생하여 저항을 파괴할 뿐만 아니라 회로 주변을 태우고 나아가서는 화재를 일으킬 위험성까지 있습니다. 정격전력의 여유는 설계상의 전력에서 2배 정도로 잡는 것이 일반적이지만 회로의 사용 환경이나 부품의 배치등 여러가지 요소에 의하여 결정됩니다. 가장 많이 사용되는 탄소피막저항의 경우 정격전류 1/8, 1/6, 1/4, 1/2등의 다양한 제품이 사용되며 저항의 종류에 따라 정격전력의 범위도 다릅니다.

회로에 사용할 저항의 종류를 결정할 때 저항의 소비전력은 매우 중요한 요소입니다. 예를 들어, 발열이 많은 부분에는 내열성이 강한 시멘트 저항이나 메탈클래드 저항을 사용하여야 하며 각 저항의 종류에도 정격전력의 한도가 정해져 있습니다.
  5) 허용오차
모든 저항기에는 공칭 저항 값에 대한 오차가 있으며 제조회사에서는 이에 대한 허용 오차를 범위를 명시하고 있습니다. 이 허용 오차는 컬러코드로 저항 값을 표시하는 경우에는 컬러코드에 함께 표시하고, 문자로 표시할 때는 다음과 같은 알파벳 기호로 나타냅니다.

---[저항기 오차범위의 기호]
기호 A B C D F G J K M N
허용오차 ±0.05% ±0.1% ±0.25% ±0.5% ±1% ±2% ±5% ±10% ±20% ±30%

가장 일반적인 탄소 피막형 저항의 허용 오차는 ±5% 정도이지만 각 제조회사에서는 이를 선별하거나 보다 정밀한 가공 과정을 거쳐 정밀급 저항을 판매하고 있습니다. 예를 들어 100Ω 저항의 허용 오차가 ±5%인 경우에 실제 제품의 저항 값은 95 Ω ~ 105 Ω 의 값을 갖습니다. 하지만 회로에 따라서는 매우 정확한 저항값을 요구하는 경우도 있는데 이 경우에는 보다 높은 정밀도의 선별된 저항을 구입하거나 여러 개의 저항을 구입하여 자신이 원하는 치수에 맞는 저항을 측정기로 찾아내어 사용하기도 합니다.
  6) 최대 사용 전압
저항에 인가될 수 있는 최대 전압의 크기를 나타냅니다. 만일 이 이상의 전압이 흐르게 되면 저항이 파괴되거나 직접 전류가 흘러 회로 자체가 파괴되기도 합니다. 따라서, 고전압을 다루는 회로에서는 특수한 저항이 사용되기도 합니다.

저항은 기본적으로 물질의 전기저항 특성을 이용한 것이므로 이외에도 습도와 흐르는 전류의 크기 전류의 주파수에 따라서 여러가지 특성이 변화합니다.

심화 저항의 전압, 전류 의존성
심화 습도의 영향과 주파수 의존성
사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

대표적인 저항의 종류와 특성

Posted by 노구라
2011. 11. 11. 08:40 기술지식/반도체전자전기
:: 고정값 저항기(Fixed Resistor)
  1) 탄소피막 저항기 (Carbon Film Resistor)
가장 널리 사용되는 형태의 저항으로 세라믹 로드(ceramic rod)에 탄소분말을 피막 형태로 입힌 후 나선형으로 홈을 파서 저항 값을 조절하는 방법으로 만듭니다. 이후에 저항의 표면에 절연 도장을 입히고 절연 도장의 유무에 따라 비절연형, 간이절연형, 절연형 등으로 구분하기도 합니다.

일반용으로 가격이 싸며 가장 많이 사용되며 고정밀도나 대전력이 아닌 모든 경우에 가장 널리 사용되는 형태의 저항입니다. 단, 전류 잡음이 크기 때문에 고정밀도를 요구하는 경우에는 금속피막형을 대신 사용하기도 합니다.

----저항 범위:1.0 Ω∼100 MΩ
----전력 범위:1/8W,1/4W,1/2W
----오차 범위:±5%, ±2%

----온도 계수:+350∼-1300ppm/℃

-------[탄소피막 저항기의 특징]
장점 단점
>> 양산화에 의하여 가격저렴.
>> 사용온도 조건내에서의 저항치 분포양호.
>> 높은 저항치를 소형으로 제조.
>> 실장요구에 따라 형상선정이 가능.
>> 저항온도계수가 비교적 크다.
>> 전류잡음이 크다.

  2) 솔리드 저항기(Solid Resistor, Composition Resistor)
솔리드 저항기는 탄소 분말에 저항값 조절을 위한 혼합재를 섞고 결합제인 폴리머와 함께 그대로 성형한 형태의 저항입니다. 따라서, 저항기 전체가 저항값을 갖는 막대형 덩어리로 되어 있어 솔리드(Solid) 저항이라고 부르며 탄소 분말에 다른 물질을 혼합한다는 의미로 Carbon Composition Resistor라고 부르기도 합니다. 하지만 국내에서는 솔리드 저항기라는 이름으로 더 많이 불립니다.


한 덩어리의 저항체로 이루어진 저항이기 때문에 정확한 정밀도가 높은 저항을 만들기는 어렵지만 소형으로 고내압, 고저항의 제품을 만들기가 용이합니다. 또한, 생산 가격이 저렴하고 고주파 특성도 양호하지만 습기에 약하고 온도계수 역시 큽니다. 요즘에는 많이 생산되고 있지 않은 저항 중의 하나입니다


---
[탄소피막 저항기의 특징]
장점 단점
>> 기계적으로 견고하며 가볍고 소형이다.
>> 제조 가능한 저항치 범위가 넓다.
>> 단선불량 등의 치명적 불량이 거의 없다.
>> 절연체에 의해 보호되므로 내전압이 양호.
>> 소형저항기 중에서 Pulse 및 Surge에 강하다.
>> 고주파 특성이 양호
>> 온도·습도 의존성이 크다.
>> 구성재료의 제약으로 불연화가 곤란하다.
>> 온도계수와 전류잡음이 비교적 크다.
>> 정밀한 제품을 만들기 어렵다.

  3) 금속피막 저항기

정밀한 저항이 필요한 경우에 가장 많이 사용되는 저항기로 특히 고주파 특성이 좋으므로 디지털회로에도 널리 사용됩니다. 제조 방법은 세라믹 로드에 니크롬, TiN, TaN, 니켈, 크롬 등의 합금을 진공증착, 스퍼터링등의 방법으로 필름 형태로 부착시킨 후 홈을 파서 저항 값을 조절하는 방법으로 만듭니다.

대량생산에도 적합하고 온도특성, 전류 잡음 등 많은 장점을 가지고 있지만 재료의 특성상 탄소피막 저항기에 비해 가격이 비쌉니다.

----저항 범위:20Ω∼2MΩ
----전력 범위:1/8W,1/4W,1/2W
----오차 범위:±0.5%,1%,2%
----온도 계수:±25∼±250ppm/℃


------
[금속피막저항기의 특징]
장점 단점
>> 저항온도계수가 낮다.
>> 잡음이 대단히 낮다.
>> 내열성이 우수하다.
>> 경시변화가 매우 적다.
>> 고주파 특성이 양호하다.
>> 고정밀·고안정성의 저항기 제작이 가능
>> 가격이 비싸다.




  4) 산화금속피막 저항기
세라믹 로드에 금속산화물의 도전성 박막을 코팅하여 저항체를 형성하고 Cutting한 후 절연·보호도장을 하여 제조합니다. 소형으로 큰 전력용량의 저항기를 만들 수 있고 고온 안정성, 잡음, 주파수 특성도 우수한 저항입니다.

특히 열에 강하고 소형에 많은 전류를 흘릴 수 있어 전원 회로 등에 널리 사용됩니다.

저항 범위:10Ω∼100kΩ
전력 범위:0.5W,1W,2W,3W
오차 범위:±2%,5%
온도 계수:±200∼±350ppm/℃


------
[산화금속피막저항기의 특징]
장점 단점
>> 소형이면서 큰 전력에 견딜수 있다.
>> 실리콘계 도료의 상용으로 내열성,
불연성이 우수하다.




>> 소형이면서 큰 전력이 부하되므로 저항기의 표면온도가 높 게 상승되어 주위의 타 부품에 영향을 미칠수 있으므로 주의하여 사용한다.
>> 단위면적당의 전력밀도가 높아 저항기의 사소한 결함이 고 장으로 연결되기 쉽다.
>> 온도계수가 금속피막저항기에 비하여 높다.(±350ppm/℃)

  5) 메탈 글래즈 저항기(Metal Glaze Resistor)

금속분말(RuO)과 유리 분말의 혼합물로 저항막을 만드는 저항기로 우수한 내습, 내열성을 갖습니다. 하지만 고가이기 때문에 널리 사용되기 보다는 고온이나 습도가 높은 가혹 환경에 사용되는 기기에 주로 사용됩니다.

----[메탈글래즈 저항기의 특징]
장점 단점
>> 고정체 저항기와 금속피막저항기의 중간 특성을 같는다.
>> 내습성과 내열성이 우수하다.
>> 넓은 저항치 범위를 갖는다.
>> 고가이다.


 

  6) 휴즈형 저항기(Fusible Resistor)

-
[휴즈형 저항기의 특징]
장점 단점
>> 정상상태에서는 저항기로 동작하고 과전류가 흐를 때 단선상태로 되어 회로 및 기기를 보호한다
>>
저항기로서의 신뢰서이 높고 확실한 용단 특성을 갖는다.
>> 불연도장을 한 불연성 저항기이다.
>> 단선상태로 되어있을 때 높은 전압이 가해지면 Arc 방전을 일으킬 우려가 있다.
>> Pulse 부하가 가해지는 회로에는 사용을 피한다


 

  7) 권선형 저항기 (Wire Wound Resistor)

안정성이 좋은 정밀저항이므로 주로 계측기 등에 많이 사용됩니다.

저항 범위:0.1Ω∼200kΩ
전력 범위:1/8W∼2W
공칭 오차:±0,.1%,1%
온도 계수:±30∼±100


----
[권선형 저항기의 특징]
장점 단점
>> 고온에 견디므로 부하전력을 크게 할수있다.
>> 과부하에 강하다.
>> 온도계수가 작다.
>> 잡음이 극히 적다.
>> 저저항값이 비교적 용이하게 얻어진다.
>>
기계적으로 강한 구조이다.
>> 고저항값을 얻기가 어렵다.
>> 고저항의 경우 선경이 가늘어야 하므로 단선의 우려가 있다.
  8) 권선형 무유도 저항기 (Non Inductive Wire Wound Resistor)

권선형 저항기는 권심에 저항선을 코일처럼 감아서 만들기 때문에 코일에 의한 유도 성분이 발생합니다. 이 유도 성분은 저항과 결합하여 고주파 대한 필터로 작용하거나 하여 전달되는 신호에 악영향을 미칠 수 있습니다. 따라서, 중요한 신호를 전달하는 경로에는 유도성분을 제거한 무유도 저항기를 사용합니다. 하지만, 탄소피막 저항기나 금속필름 저항기는 유도 성분이 있더라도 아주 미미하므로 굳이 무유도 저항기를 따로 분류하지는 않습니다. 권선형 무유도 저항기에서는 코일 형태의 저항선에 의한 유도 성분이 서로 상쇄되도록 감는 방향을 구분해서 감는 방법으로 유도성분을 제거합니다.
  9) 시멘트 저항기(Cement Resistor)와 메탈클래드 저항기(Metal Clad Resistor)
시멘트 저항기
메탈클래드 저항기

시멘트 저항기와 메탈클래드 저항기에 사용되는 내부 저항체는 주로 권선형 저항기이지만 경우에 따라서는 다른 형태의 저항체가 삽입되기도 합니다.


------
[시멘트 저항기와 메탈클래드 저항기의 특징]
장점 단점
>>불연성이다.
>>방열특성이 우수하다.
>> 무게가 무겁다.
>>부피가 크다.
  10) 후막칩 저항기(Thick Film Resistor)
메탈클래드 저항기


회로가 점점 소형화 되고 부품의 대부분이 SMT(Surface Mount Technology) 공법에 의해 장착되면서 개발된 새로운 형태의 저항기 입니다.이러한 칩 형태의 저항기는 세라믹 기판 위에 저항체를 후막 형태로 얹어서 제조하며 지속적으로 소형화가 이루어지고 있습니다. 특히 고주파 특성이 우수하고 소형이므로 핸드폰, 컴퓨터등의 최신 기기들에는 대부분 이러한 칩 형태의 저항기가 사용됩니다.

------[후막칩저항기의 특징]
장점 단점
>>소형·박형으로 고밀도 실장이 가능하다.
>>
실장 코스트가 절감된다.
>>
고주파 특성이 양호하다.
>> 고가이다.
>> 납땜조건(온도·시간)의 관리가 필요하다.
>> 기판 Pattern 배선에 주의가 필요하다
  11) 네트워크 저항기(Network Resistor)
칩 네트워크 저항기

------
[네트워크 저항기의 특징]
장점 단점
>> 직접화에 의해 조립공수를 줄이고 자동조립이 용이하다.
>> 고밀도 실장으로 실장면적이 감소한다.
>> 고가이다.
>> 납땜조건(온도·시간)의 관리가 필요하다.
>> 기판 Pattern 배선에 주의가 필요하다
  12) 박막형 칩 저항기(Thin Film Chip Resistor)
박막형 칩 저항기는 후막형 칩 저항기와 거의 같은 모양을 가지고 있지만 저항체 막의 두께가 훨씬 얇고 저항체 금속으로 Ni-Cr계, TiN, TaN 등이 주로 사용된다.
박막형 칩 저항기는 후막저항기보다 저항값 허용차와 저항온도계수특성이 정밀하고 전류 노이즈특성, 고주파특성이 우수하여 정밀 기기 등에 주로 사용된다.

심화 외형으로 저항기 구분하기
:: 가변 저항기(Variable Resistor)
가변 저항기는 저항 값을 바꿀 수 있는 형태의 저항의 총칭입니다. 흔히 볼륨(Volume)이라고 부르는 단어는 신호의 양을 조절한다는 의미이지만 일반적으로 손잡이를 돌려서 저항 값을 가감하는 가변저항을 가리킵니다.
영문 표기로는 potentiometer라는 단어를 더 많이 사용하지만 우리말로 포텐셔메타 라고 말할 때는 보다 정밀한 precision potentiometer를 주로 가리킵니다.

가변저항기의 종류에는 사용하는 저항체의 종류에 따라 탄소피막형(carbon film), 서미트형(Cermet), 권선형(wire wound) 가변저항기가 있으며 이밖에도 여러가지 신소재를 이용한 제품들이 개발되고 있습니다. 또한, 형태에 따라서는 일반적인 가변저항기와 반고정 저항기, 정밀형 가변저항기(Precision Potentiometer), IC형 가변저항기 등이 있습니다.
------[저항체 재료에 따른 가변저항의 종류]
종류 영문명칭
>>탄소피막 가변저항기
>>Carbon Film Variable Resistor
>>서미트형 가변저항기
>>Cermet Variable Resistor
>>권선형 가변저항기
>>Wire Wound Variable Resistor
>>전도성 플라스틱 가변저항기
>>Conductive Plastic Variable Resistor

------[형태에 따른 가변저항의 종류]
종류 영문명칭
>>볼륨형 가변저항기
>>Panel Mountable Potentiometer
>>슬라이드 가변저항기
>>Slide Potentiometer
>>반고정 저항기
>>Trimmer Potentiometer
>>정밀형 가변저항기
>>Multi Turn Precision Potentiometer

* 위의 구분은 표준 용어가 아니라 업체에서 흔히 사용하는 관용 용어이므로 업체에 따라 표기 방법이 조금씩 다를 수 있습니다.
  1) 탄소피막형 가변저항기
가장 일반적인 형태의 가변저항기로 베이클라이트와 같은 절연기판 소재에 탄소 피막을 입혀 저항 값을 조절하고 저항기의 한쪽 전극을 탄소피막 위를 이동시켜 저항값을 조절합니다. 저항체의 특성은 일반적인 탄소피막 저항기와 거의 같으며 전극의 이동에 회전축을 이용하는 형태와 좌우로 이동하는 형태가 있습니다. 특히 가장 널리 사용되는 용도에는 오디오용 볼륨이나 Balancer 등이 있으며 흔히 볼륨이라고 할 때는 탄소피막형 회전축 가변저항을 의미합니다.

------
[탄소피막형 가변저항기의 특징]
장점 단점
>> 가격이 비교적 저렴하다.
>> 성능이 안정되어있다.
>> 저항온도계수가 크다.
  2) 서미트형 가변저항기
세라믹을 절연체로 cermet(ceramic과 metal을 혼합한 저항체) 저항체를 이용한 정밀 가변저항입니다. Cermet은 탄소피막에 비하여 내구성이 강하고 정밀한 저항값 조절이 가능합니다. 또한, 온도계수가 낮고, 내습성이 우수하지만 가격이 비싸므로 주로 아날로그 회로의 바이어스 조정, 레벨 미조정 회로와 같이 세밀한 조정이 필요한 곳에 사용합니다

------
[세미트형 가변저항기의 특징]
장점 단점
>> 저항온도계수가 낮다.(±100 ∼ ±300ppm/℃)
>> 소형이다
>> 미세 조정이 가능하다.
>> 가격이 비싸다.

  3) 권선형 가변저항기
권선형 고정 저항기와 마찬가지로 절연체 권심에 저항선을 감아 만듭니다. 권선형이므로 대전력형을 만들기가 용이하기 때문에 주로 전류, 전력 조절용 가변저항부에 많이 사용하지만 크기가 크고 높은 저항값을 얻기가 어렵습니다. 또한, 유도성분이 발생하기 쉬워 고주파 회로에는 적합하지 않습니다.

------
[권선형 가변저항기의 특징]
장점 단점
>> 온도특성이 우수하다.(±50ppm/℃이하)
>> 고정밀 저항기가 가능하고 안정적이다.
>> 대전력형이 가능하다.
>> 절연체에 의해 보호되므로 내전압이 양호.
>>고가이다.
>> 고저항값을 얻기가 매우 어렵다. (수Ω∼수㏀)
>> 대전력형인 경우 발열이 크다.
>> 주파수가 높은 교류에 사용이 어렵다.
  4) 볼륨형 가변저항
  5) 반고정 가변저항
  6) 정밀 가변저항
정밀 가변저항(Precision Potentiometer)은 일반형 가변 저항이 1회전 또는 270°의 회전각을 갖는데 비하여 2회전 이상의 회전으로 저항값을 보다 정밀하게 조절할 수 있는 저항을 말합니다. 정밀 가변저항에는 볼륨형과 반고정형이 있으며 주로 사용되는 형태는 반고정형입니다. 정밀 가변저항은 고정밀도를 요구하는 회로에 사용되기 때문에 Cermet 저항체 또는 권선형 저항체가 사용됩니다.
:: 서미스터와 배리스터
서미스터(Thermistor)와 배리스터(Varistor)는 저항의 일종이지만 다른 저항과는 용도가 조금 다릅니다. 이들 부품은 빛과 온도에 반응하여 저항값이 변하며 센서의 용도로 사용됩니다.
  1) 서미스터
표준형 NTC 서미스터


NTC(Negative Temperature Coefficient Thermistor)
- 온도가 상승되면 저항값이 감서하는 특성을 갖는 서미스터입니다. (부온도특성 서미스터)
PTC(Positive Temperature Coefficient Thermistor)
- 온도가 상승되면 저항값이 증가하는 특성을 갖는 서미스터입니다. (정온도특성 서미스터)
CTR(Critical Temperature Resister Thermistor)
- NTC와 비슷하지만 온도가 상승되면 특정의 온도 이상에서 저항값이 급격히 감소하는 서미스터입니다.

이중에서 가장 널리 사용되는 것은 NTC 서미스터이며 컴퓨터의 메인보드에서부터 각종 냉온방기의 온도 센서로 널리 사용됩니다. 서미스터 소자의 온도 측정 범위는 -50℃ ~ 500℃까지 다양하지만 실제로는 실온 부근의 온도 측정에 가장 많이 사용되며 보다 고온의 온도 측정에는 PT100 측온저항체와 같은, 다른 종류의 온도 센서들이 사용됩니다.

  2) 배리스터(Varistor)
원반형 Varistor

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

저항값 읽기

Posted by 노구라
2011. 11. 11. 08:39 기술지식/반도체전자전기
:: 컬러코드 읽기
대부분의 저항은 2개의 다리(lead)가 달려있는 원통형으로 되어있습니다. 이러한 형태의 저항은 크기가 작아 숫자로 용량을 표시하기 곤란하므로 컬러코드라는 색띠로 용량을 표시합니다. 그러므로, 일부 저항을 제외한 저항의 수치를 읽으려면 반드시 아래에 설명하는 컬러코드를 이해하여야 합니다.

저항에는 저항수치를 표시하는 색대(컬러코드)가 있습니다. 이 컬러코드는 저항의 정밀도에 따라 4색대 또는 5색대로 되어 있으며 각각의 색상은 아래와 같은 값을 나타냅니다.
4색대 저항을 예로 들어 그림과 같이 색대가 노란색/보라색/빨강색/금색인 경우를 예로 들어 보겠습니다.


------------------1색대 - 노란색 : 4
------------------2색대 - 보라색 : 7
------------------3색대 - 빨강색 : 승수 102
------------------4색대 - 금색 : 허용오차 ±5%(J)

그러므로 이 저항은 4700Ω의 값을 가지며 허용 오차는 ±5%입니다. 그런데, 저항에서는 4700Ω 이라고 표기하지 않으며 4.7kΩ이라고 합니다. 다음은 5색대 저항의 값을 읽어보겠습니다. 5색대 저항의 경우에는 4색대보다 하나 많은 세자리가 저항 값을 나타내며 나머지 두자리가 승수와 허용오차를 표시합니다.

그림의 5색대 저항의 값을 읽어보겠습니다. 그림의 저항 색대는 빨강색/주황색/보라색/검정색/갈색의 순입니다.

------------------1색대 - 빨강색 : 2
------------------2색대 - 주황색 : 3
------------------3색대 - 보라색 : 7
------------------4색대 - 검정색 : 100
------------------5색대 - 갈색 : ±1%(F)

위의 저항은 237Ω의 값을 가지며 허용 오차는 ±1% 입니다.

저항의 컬러코드를 읽다 보면 어느쪽에서부터 색대를 읽어야 할지 혼동되는 경우가 있습니다. 대부분의 경우에는 조밀한 색대를 왼쪽에 두고 간격이 넓은 부분을 오른쪽으로 하여 왼쪽에서부터 색대를 읽으면 되지만 저전력형의 소형 저항의 경우에는 워낙 색대의 간격이 좁기 때문에 이와 같은 방법으로 판별하기 어려울 경우도 있습니다. 이 경우에는 멀티미터로 정확하게 측정하는 것이 가장 좋은 방법입니다.

:: 저항값의 종류(저항값의 계열 분류)
저항을 사용하다 보면 저항 값들이 이상한 숫자들로 되어 있는 것을 알 수 있을 것입니다. 예를 들어, 47kΩ, 560Ω 등의 저항값은 있지만 정확히 500Ω의 값을 갖는 저항은 찾아볼 수 없습니다. 그 이유는 저항기 생산 업체에서 생산되는 저항들이 E계열이라는 값으로 정해져 있기 때문입니다. 저항의 E계열이란 KS, JIS와 같은 여러나라의 공업규격에서 공통적으로 사용하는 규격 중의 하나로 1부터 10까지의 숫자을 10의 등비급수로 나눈 값입니다. 예를 들어 E3 계열이라고 하면 다음과 같이 계산됩니다.


즉, E3계열의 저항이 있다면 1Ω, 2.2Ω, 4.7Ω, 10Ω, 22Ω, 47Ω, 100Ω… 과 같은 연속된 값을 갖게 됩니다. 그러나, 실제로는 E3 계열은 사용되지 않으며 가장 일반적인 2, 5, 10%의 오차를 갖는 저항은 E24계열의 저항 값을, 1%는 E96, 0.5% 이하의 오차를 갖는 경우에는 E192 계열의 저항값을 갖습니다. 오차가 적은 저항일수록 높은 계열을 사용하는 이유는 그만큼 종류가 많기 때문입니다.

[표준저항값]

저항을 생산할 때 이렇게 복잡한 숫자로 만드는 이유는 모든 수치의 저항값을 생산할 수 없으며 오차의 범위를 감안하면 연속적인 저항 값을 얻을 수 있기 때문이다.

심화 저항의 선택 방법
심화 정확한 저항값 맞추기

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

콘덴서(Condenser)는 전기(정확히는 전하)를 저장하는 부품

Posted by 노구라
2011. 11. 11. 08:38 기술지식/반도체전자전기
콘덴서(Condenser)는 전기(정확히는 전하)를 저장하는 부품입니다.
콘덴서(Condenser)라는 이름은 전기를 압축(Condense)한다는 의미에서 붙은 이름이지만 영문 표기로는
Condenser 이외에 Capacitor(캐패시터)라는 표기를 많이 사용합니다. 영문에서 Condenser에는 축전기라는
의미도 있지만 실제로는 냉매를 압축하는 응축기라는 뜻으로 더 많이 사용됩니다.
그런데, 우리나라에서 콘덴서라는 단어를 일반적으로 사용하는 이유는 일본에서 콘덴서라는 명칭을 사용하기
때문입니다.
:: 저항의 특성 및 규격
콘덴서가 전기를 저장한다는 의미는 실제로는 전기의 전하를 저장하는 것입니다. 콘덴서는 전하를 정해진 용량만큼 저장하고 다시 이 전하를 방출하는 기능을 함으로써 직류 차단과 교류 통과, 축전지, 필터 등의 기능을 합니다. 콘덴서의 용량 단위는 F(패럿 또는 파라드: Farad)이며 이것은 영국의 물리학자인 마이클 패러데이(Faraday, Michael [1791~1867])의 이름을 딴 단위입니다.

이론적인 콘덴서의 동작은 아래 그림과 같습니다


두 개의 전극 사이에는 유전체라고 불리는 물질로 절연되어 있습니다. 이때 양쪽 전극에 전압이 가해시면 두개의 전극 사이에 전하가 충전되기 시작하며 순간적으로 전류가 흐릅니다. 하지만 전극 사이에 있는 물질에 전하가 더 이상 충전될 수 없을 때는 전류가 흐르지 않으며 다시 두개의 전극 사이를 연결하면 충전되어 있던 전하가 회로를 따라 흐르게 됩니다. 이 과정을 콘덴서의 충전과 방전이라고 하며 콘덴서를 응용하는 모든 회로는 기본적으로 이 동작을 응용한 것입니다. 이때 콘덴서가 충전할 수 있는 전하의 양을 정전용량(F: 패럿)이라고 하며 콘덴서의 정전용량은 콘덴서에 사용된 유전체의 종류, 전극의 넓이, 전극 사이의 간격에 의해 결정됩니다.

즉, 콘덴서의 용량은 유전체의 유전율과 전극의 면적에 비례하고 전극 사이의 거리에 반비례합니다.

:: 콘덴서의 기호
---[콘덴서의 단위와 표시 기호]
부품종류 회로 기호 알파벳 약호 단위
콘덴서 C F (Farad), ㎌, ㎊

콘덴서의 기호에는 이밖에도 여러가지가 있지만 가장 많이 사용되는 기호는 위의 세가지 기호입니다.


심화 콘덴서의 발견
심화 전하량과 정전용량(Q=CV)
심화 유전체와 유전율
:: 콘덴서의 동작

콘덴서의 기본 동작은 전하의 충전과 방전이므로 이를 이용하여 여러가지 전기적인 동작을 합니다. 가장 기본적인 동작은 직류는 통과시키지 않고 교류만 통과시키는 동작입니다.

콘덴서는 직류가 가해지면 전하가 충전되고 다시 충전된 전압과 반대되는 방향의 회로가 연결되면 방전이 일어납니다. 만일, 이 과정을 빠른 속도로 반복하면 어떻게 될까요? 콘덴서의 양쪽 끝에는 충전과 방전으로 인한 교류 전류가 흐르게 될 것입니다. 콘덴서가 직류는 통과시키지 않고 교류만 통과 시킨다는 것은 바로 이런 동작을 가리키는 말입니다.

콘덴서는 이와 같은 기본 동작을 이용하여 다음과 같은 다양한 회로를 구성하는데 사용됩니다.

  1) 정류회로
다이오드와 함께 정류회로를 구성하여 교류를 직류로 만듭니다.
  2) 지연 회로
콘덴서의 충전 시간 동안 신호를 전달하는 시간을 늦추는 지연회로에 사용합니다.
  3) Low-Pass Filter

저항과 함께 일정한 주파수보다 낮은 주파수의 신호만을 통과시키는 Low-Pass Filter 역할을 합니다.
  4) High-Pass Filter
Low-Pass Filter와 반대로 일정한 주파수 보다 높은 신호만을 통과시키는 필터가 High-Pass Filter입니다.


콘덴서는 이밖에도 미분회로, 적분회로, 결합회로, 바이패스 등의 다양한 용도로 사용됩니다.
심화 콘덴서의 직렬 용량과 병렬 용량

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

다이오드란 한 방향으로만 전류를 흐르게 하는 부품

Posted by 노구라
2011. 11. 11. 08:38 기술지식/반도체전자전기

다이오드란 한 방향으로만 전류를 흐르게 하는 부품입니다. 이런 다이오드의 성질을 이용하여 교류를 직류로 변환하는 정류작용이나 방송 전파 내에 포함되어 있는 음성 신호를 검파하는 데 이용하기도 합니다.
:: P형 반도체와 N형 반도체
P형 반도체는 순수 실리콘(Si)이나 게르마늄(Ge)에 극소량의 3가 원소 인디움(In)을 혼합하면 원자 대신 3가인 인디움 원자가 게르마늄과 공유결합을 하게 되는데 이때 인디움 원자는 4가인 게르마늄 원자보다 1개의 전자가 부족하게 됩니다. 그러므로 부족한 전자를 채우기 위해 주위에서 전자를 끌어당기는 흡인력을 나타내게 됩니다. 여기서 전자가 부족한 곳은 (-)전하를 가진 전자를 끌어들이려 하므로 마치 (+)전하가 있는 것과 같으나 실제로는 아무것도 없으므로 (+)전하의 성질을 띤 구멍이라는 뜻으로 정공(正孔; positive hole)이라고 합니다.

또한 N형 반도체는 역시 순수 실리콘이나 게르마늄에 5가 원소인 비소(As) 혹은 같은 5가원소인 안티몬(Sb)을 혼합하면 5가인 비소가 실리콘과 공유결합을 하게 되는데 비소가 가지고 있는 5개의 전자 중 4개는 4가 원소인 실리콘과의 결합에 사용하고 나머지 1개는 결합을 할 곳이 없어 남게 되므로 그 전자는 이동하기 쉬운 불안정한 상태로 남게 됩니다. 이를 자유전자 혹은 과잉전자라고 합니다.

이러한 불안정한 성질 때문에 순수한 진성 반도체와는 달리 비교적 전류가 흐르기 쉬운 상태가 됩니다.

즉 P형 반도체는 정공을, N형 반도체는 자유전자를 캐리어(Carrier)로 많이 가지고 있다고할 수 있습니다. 캐리어란 전류의 운반체(Carrier)와 같은 역할을 하여 붙여진 이름입니다.
:: 다이오드의 구조와 원리
다이오드는 위에서 설명한 P형 반도체와 N형 반도체를 아래의 그림과 같이 접합 한 것입니다.
이와 같이 P형 반도체와 N형 반도체를 접합하면 P형 반도체와 N형 반도체가 접합되어 있는 부근에는 서로간의 흡인력으로 인해 정공과 전자는 서로 상대 영역으로 확산이 일어나 게 됩니다.

접합부에서 P영역의 정공이 떠난 3족 원자는 음이온이 되고 , N영역의 전자가 떠난 5족은 양이온이 되게 됩니다. 이런 이온들은 원자 자체가 전기를 띤 것이므로 움직일 수 없습니다. 즉 정공과 전자의 확산으로 움직이지 않는 이온들을 만들게 되며 이 영역은 정공과 전자가 존재하지 않는 결핍층을 형성하고 전기장이 형성됩니다.

결핍층은 아래의 그림과 같이 자유전자나 정공이 전혀 없는 절연 영역이 됩니다. 이 절연 영역은 전자나 정공이 매우 이동하기 어렵습니다.
이후 확산이 진행됨에 따라 결핍층 내의 이온수가 증가하게 되고 전기장이 점점 세지게 되며 어느 순간 캐리어가 이동하려는 힘과 저지하려는 전기장의 크기가 같아지면서 확산은 중지되고 평형상태에 있게 됩니다.

이런 전기장에 의한 전위차 때문에 P영역의 정공과 N영역의 전자는 서로 상대영역으로 들어갈 수 없게 됩니다. 이 전위차를 전위장벽이라 하며 실리콘의 경우 0.7V, 게르마늄의 경우0.3V가 되며 다이오드를 통과한 전류는 전위장벽만큼 낮아진 전압이 됩니다. 이를 순방향 전압강하(Forward voltage drop, Vf)이라고 합니다. 외부에서 전위장벽보다 높은 전압을 인가하면 전위장벽을 허물 수 있으며 이때는 정공과 전자가 쉽게 이동 할 수 있는 도체가 되게 됩니다.

아래 그림과 같이 P형에 정전압, N형에 부전압을 가하면 정공과 자유전자는 서로 다른 측으로 진입하게 되어 전류가 흐르게 됩니다.. 즉 N형 반도체 안에 있는 자유전자는 전원의 부전압에 반발되어 P형으로 주입되며 P형에 가해져 있는 정전압에 흡인되어 점차 이동됩니다. 이 주입된 전자는 P형에 있는 정공과 결합하여 소멸하게 됩니다. 반대로 P형의 정공도 정전압에 반발돼 N형에 주입되어 자유전자와 결합합니다. 그러나 전원으로부터 전자와 정공이 계속적으로 보급되므로 전류는 계속 흐르게 됩니다. 전류의 방향은 전자의 이동 방향의 반대이며 정공의 움직임과 같은 방향이 됩니다.
PN접합에서는 P형에서 N형에는 전류가 흐르나, N형에서 P형으로는 흐르지 않습니다. 이와 같이 전류가 잘 흐르는 P→N방향을 순방향이라고 합니다.

반대로 아래 그림과 같이 PN접합의 P형에 부(-)의 전압을, N형에 정(+)의 전압을 가한 경우 정공은 전원의 부전압에 의해 당겨지고 자유전자는 전원의 정전압에 당겨져서 양단에 이동하고, 중앙부가 큰 저항을 나타내며 전류는 거의 흐르지 않습니다. 이때 역방향으로 흐르는 미세한 전류를 누설전류, 혹은 역방향 전류라고 부릅니다.
이때 어느 정도 이상의 역전압이 걸리게 되면 갑자기 전류가 흘러버리는 현상이 생기는 데 이때의 전압을 항복 전압이라고 합니다. 이 현상은 Avalanche와 Zener effect의 두 가지 종류가 있습니다.

Avalanche현상은 전압이 증가하다 다이오드 내부의 전자가 전압을 이기지 못하고 처음 한 개의 전자가 튀어나가면서 다른 전자도 함께 튕겨내게 됩니다. 이러한 현상이 기하급수적으로 늘어나게 되는데 마치 눈사태와 같다고 하여 avalanche 현상이라고 합니다. 이는 보통 수백V의 전압이 걸릴 때 일어나며 일시적인 현상이라 전압을 낮추게 되면 원래의 상태로 돌아가게 됩니다.

Zener effect는 PN접합의 역방향으로 전압을 걸게 되면 앞서 설명 드린 바대로 미세한 전류가 흐르게 되는데 이 전압을 높여 가면 P형 반도체에 있는 전자가 절연 영역의 미세한 구멍(공극층; 空隙層)을 통과해 N형 반도체 쪽으로 이동하는 양자역학적 터널 효과가 발생합니다. 이 때 전압을 더욱 높이면 터널도 더욱 넓어지게 되어 전류는 증가하게 되나 전압은 증가하지 않습니다. 즉 역방향에 걸리는 전압이 일정하게 되게 되는데, 다이오드 중에서 Zener Diode는 이와 같은 현상을 이용하여 정전압을 만들어내는 소자입니다.

:: 다이오드의 회로 기호
회로도 기호 명칭 설명
일반 범용 다이오드 정류 , 스위칭 , 검파용
Zener diode 정전압 다이오드
Schottky Barrier Diode 고주파 스위칭용
Variable-capacitance Diode 가변 용량 다이오드. 고주파 동조용
브릿지 다이오드 전원 정류용
발광 다이오드 디스플레이용
사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

다이오드의 특성

Posted by 노구라
2011. 11. 11. 08:37 기술지식/반도체전자전기
 1) Forward Voltage
순방향 전압으로 순방향으로 전류가 흐를때 강하되는 전압을 말합니다. 마찬가지로 최소한 순방향 강하전압 이상의 전압을 가해야만 전류가 흐를 수 있습니다.
  2) Peak Reverse Voltage
순간 허용 역전압으로 지속적이지 않고 순간적으로 허용되는 역방향 전압을 말합니다.
  3) RMS Reverse Voltage
역방향 실효전압으로 역방향으로 허용되는 교류 실효전압을 말합니다.
  4) Maximum Reverse Leakage Current
최대 역방향 누설전류로 역방향으로 접속되었을 때의 최대 누설전류를 말합니다.
  5) Forward Continuous Current
순방향 허용 전류로 순방향으로 접속되었을때 허용되는 최대 전류를 말합니다.
  6) Norminal Zener Volatage
정격 제너 전압으로 제너 다이오드의 경우 실온에서의 제너 전압을 말합니다.
  7) Average Rectified Output Current
평균 정류 전류로 정류 다이오드의 경우 허용되는 평균 전류량을 말합니다.
  8) Thermal Resistance
열저항으로 내부 접점으로부터 외부 공기까지의 열저항을 말합니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

다이오드의 종류

Posted by 노구라
2011. 11. 11. 08:37 기술지식/반도체전자전기
 
  1) Forward Voltage
순방향 전압으로 순방향으로 전류가 흐를때 강하되는 전압을 말합니다. 마찬가지로 최소한 순방향 강하전압 이상의 전압을 가해야만 전류가 흐를 수 있습니다.
  2) Peak Reverse Voltage
순간 허용 역전압으로 지속적이지 않고 순간적으로 허용되는 역방향 전압을 말합니다.
  3) RMS Reverse Voltage
역방향 실효전압으로 역방향으로 허용되는 교류 실효전압을 말합니다.
  4) Maximum Reverse Leakage Current
최대 역방향 누설전류로 역방향으로 접속되었을 때의 최대 누설전류를 말합니다.
  5) Forward Continuous Current
순방향 허용 전류로 순방향으로 접속되었을때 허용되는 최대 전류를 말합니다.
  6) Norminal Zener Volatage
정격 제너 전압으로 제너 다이오드의 경우 실온에서의 제너 전압을 말합니다.
  7) Average Rectified Output Current
평균 정류 전류로 정류 다이오드의 경우 허용되는 평균 전류량을 말합니다.
  8) Thermal Resistance
열저항으로 내부 접점으로부터 외부 공기까지의 열저항을 말합니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

트랜지스터란?

Posted by 노구라
2011. 11. 11. 08:36 기술지식/반도체전자전기
N형 반도체와 P형 반도체를 PNP / NPN 형태로 접합한 구조의 소자로 전류의 흐름등을 조절할 수 있도록 하여 만든 회로구성에서 중요한 반도체 소자입니다. 세 가지 기능, 즉 스위칭, 검파, 증폭용으로써 모든 전자 시스템에 한가지 또는 여러 가지 형태로 사용됩니다.
 
:: 트랜지스터의 역사
1948년에 세명의 물리학자 (W. Shockley, J. Bardeen, W. Brattain)에 의해 트랜지스터가 발명되었으며 당시 전자 공업계에 상당한 충격을 주었습니다. 그로부터 전자 산업은 빠르게 발전하기 시작했으며 오늘날 엘렉트로닉스 시대의 개막에 시초가 되었습니다. 그 후의 컴퓨터를 시작으로 전자공학의 급속한 발전은 우리의 생활을 편리하고 풍부하게 해 주었습니다.

트랜지스터는 당초 게르마늄이라는 반도체로 만들어?으나 게르마늄은 약 80℃정도의 온도밖에 견디지 못하는 결점이 있었습니다. 이때문에 지금에 와서는 거의 실리콘을 이용하고 있으며 실리콘은 약 180℃ 이상의 온도에도 견딜 수 있는 물질입니다.
:: 트랜지스터의 동작원리
PNP형 트랜지스터의 동작원리
P형, N형, P형의 반도체를 아래 그림과 같이 접합하고 각 반도체로부터 도선을 내놓으면 PNP형 트랜지스터가 됩니다. 세 조각의 반도체중 가운데의 엷은 막으로 되어있는것은 베이스(B : Base)라고 하고 베이스의 양쪽에 있는 다른 종류의 반도체중 작은 쪽은 이미터(E : Emitter)라 하며 큰 쪽은 콜렉터(C : Collector)라고 합니다.
위의 그림과 같은 트랜지스터(TR)는 P형, N형, P형의 순서로 접합되어 있으므로 PNP형 트랜지스터라고 합니다.

PNP형 TR을 아래의 그림과 같이 이미터와 베이스 사이에 순방향으로 전압 VBE를 공급하면 이 때는 PN접합의 2극에서 순방향 전압을 공급한 것이 되므로 이미터에서 베이스 측으로 정공이 이동하여 그림의 점선과 같이 순방향 전류가 흐르게 됩니다. 이때 전자는 정공과 반대 방향으로 즉, 베이스에서 이미터측으로 이동합니다.
이 때 아래의 그림과 같이 콜렉터와 베이스 사이에 역방향으로 더 높은 전압 VCE를 공급하면 이미터에서 베이스 측으로 들어가던 정공의 대부분이 콜렉터 측의 높은 전압에 끌려 콜렉터 측으로 이동하고 소수의 정공만이 베이스측으로 이동합니다. 즉 대부분의 전류는 콜렉터 측으로 흐르고 작은 전류가 베이스측으로 흐르게 됩니다.
순방향 전압 VBE에 의하여 이미터 측의 정공이 이동 할 때는 원래 베이스 측으로 이동하기 위하여 베이스의 영역내로 들어가게 되나 정공이 베이스의 영역에 일단 들어가면 훨씬 높은 전압이 걸려있는 콜렉터에 가까워 졌으므로 정공은 대부분 콜렉터에 끌려가고 소수의 정공이 베이스 측으로 이동하게 되는 것입니다.

그러므로 순방향 전압 VBE를 높여서 이미터로부터 베이스측으로 들어가는 정공의 수를 많아지게 하면 거기에 비례하여 콜렉터 측으로 끌려가는 정공의 수도 자연히 많아지게 됩니다.
따라서 TR은 순방향 전압 VBE에 의하여 베이스 전류(Ib)를 증가시키면 콜렉터 전류(Ic)는 자연히 증가하게 되는 것입니다. 이와 같은 원리로 동작하는 TR은 일반적으로 콜렉터 전류가 베이스 전류보다 수배~수십배로 증가하여 흐릅니다.
위와 같은 경우 이미터 전류(Ie)를 100mA흐르게 하면 콜렉터 전류 (Ic)는 99mA가 흐르고 베이스전류(Ib)는 1mA가 흐르게 됩니다. 마찬가지로 이미터 전류(Ie)를 200mA흐르게 하면 콜렉터 전류 (Ic)는 198mA가 흐르고 베이스전류(Ib)는 2mA가 흐르게 됩니다. 그러므로 이런 TR은 Ib가 1mA에서 2mA로 1mA증가할때 Ic는 99mA에서 198mA로 99mA가 증가하게 되므로 Ic는 Ib의 99배나 확대되어 흐르는 것이 됩니다.

이와 같은 예에서 Ic는 Ib가 99배 전류증폭이 되었다고 하며 이 TR은 전류증폭률이 99라고 합니다.

이 처럼 TR은 베이스 측으로 약간의 전류만 흘려도 콜렉터 측으로는 수배내지 수십배로 큰 전류가 흐르게 하는 전류 증폭 자용이 있는 것입니다. 그리고 이때 이미터에 흐르는 전류(Ie)는 콜렉터 전류 (Ic)와 베이스 전류(Ib)로 나누어져 흐르므로 항상 Ie = Ic + Ib의 관계가 성립합니다.

:: 다이오드의 회로 기호
회로도 기호 명칭 설명
일반 범용 다이오드 정류 , 스위칭 , 검파용
Zener diode 정전압 다이오드
Schottky Barrier Diode 고주파 스위칭용
Variable-capacitance Diode 가변 용량 다이오드. 고주파 동조용
브릿지 다이오드 전원 정류용
발광 다이오드 디스플레이용
  NPN형 트랜지스터의 동작원리
위의 그림은 N형, P형, N형의 순으로 서로 잡합된 NPN형 트랜지스터입니다.

NPN형 트랜지스터 역시 PNP형 트랜지스터와 같이 가운데에 엷은 막으로 되어 있는 것이 베이스이고 양쪽에 있는 다른 종류의 반도체 중 작은 쪽은 이미터이며 큰 쪽은 콜렉터입니다.
PNP형에서는 이미터에 들어있는 정공이 전류를 운반하였으나 NPN형에서는 이미터에 들어있는 전자가 전류를 운반합니다. NPN형 트랜지스터에서는 이미터에서 베이측으로 들어가던 전자의 대부분이 콜렉터 측의 +전압에 끌려가는 동작을 합니다. 즉 아래의 그림과 같이 NPN형 트랜지스터의 이미터-베이스 사이에 순방향 전압 VEB를 공급하면 이미터에서 콜렉터 측으로 전자가 이동합니다.
전류는 전자의 방향과 반대이므로 이 때 전류는 베이스에서 이미터측으로 흐릅니다.
그런데 이 때 아래의 그림과 같이 콜렉터-베이스 사이에 역방향으로 더 높은 전압 VCB를 공급하면 이미터에서 베이스 측으로 들어가던 전자의 대부분이 콜렉터 측의 높은 전압에 끌려 콜렉터 측으로 이동하게 되는 것입니다.
여기에서도 Ib가 흐르면 Ic가 흐르고 Ib가 증가하면 Ic가 수배내지 수십배 정도로 크게 증폭되어 흐릅니다.

트랜지스터의 기능을 수도에 비유해 보면 이해가 쉽습니다.
베이스는 수도의 벨브, 콜렉터는 수도꼭지 그리고 이미터는 수도배괸에 비유할 수 있습니다. 수도벨브를 작은힘(베이스의 입력신호)으로 콘트롤 하여 수도꼭지에서 많은 물이 나오며 물의 양(콜렉터 흐르는 전류)을 조절한다고 생각하면 이해하면 정확합니다.

:: 다이오드의 회로 기호
회로도 기호 명칭 설명
일반 범용 다이오드 정류 , 스위칭 , 검파용
Zener diode 정전압 다이오드
Schottky Barrier Diode 고주파 스위칭용
Variable-capacitance Diode 가변 용량 다이오드. 고주파 동조용
브릿지 다이오드 전원 정류용
발광 다이오드 디스플레이용

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

트랜지스터의 분류

Posted by 노구라
2011. 11. 11. 08:36 기술지식/반도체전자전기
:: 구조에 따른 분류
트랜지스터의 동작구조상 차이에 따라 바이폴러(bipolar) 트랜지스터와 유니폴라(unipolar) 트랜지스터로 분류 할 수 있습니다.
  바이폴러 트랜지스터
Bi(2개) Polar(극성)의 의미로서 트랜지스터를 구성하는 반도체에 정공(플러스극성)과 전자(마이너스극성)에 의해 전류가 흐르게 되어있는것을 바이폴러 트랜지스터라고 합니다. 일반적인 트랜지스터는 실리콘으로 되어 있는 바이폴러 트랜지스터를 가리킵니다.
  FET
Field Effect Transistor의 약어로 전계 효과 트랜지스터라 하며 접합형 FET와 MOS형 FET 및 GaAs형 FET가 있습니다. 접합형 FET는 오디오 기기등 아날로그 회로에 많이 이용되며 MOS형 FET는 주로 마이크로컴퓨터 등의 디지탈 IC에 사용도ㅣ고 있습니다. GaAs형FET는 위성방송 수신 등의 마이크로파의 증폭에 사용됩니다.
  ※MOS
Metal Oxide Semiconductor의 약어로 그 구조가 금속(Metal), 실리콘 산화막(Oxide), 반도체(Semiconductor)의 순으로 되어 있어서 MOS로 불리고 있습니다. MOS에는 P형과 N형, C형이 있으며 소비 전류를 작게 할 수 있기 때문에 마이크로컴퓨터 등 집적도가 높은 IC에 사용됩니다.
:: 허용전력에 따른 분류
주로 최대정격의 콜렉터 손실 Pc에 따라 분류하는 방법입니다. 크게 나누어 소신호 트랜지스터와 파워트랜지스터로 분류하며 일반적으로 파워트랜지스터라 하면 1 W이상의 것을 가리킵니다.
  소신호 트랜지스터
최대 콜렉너 전류(IC max)가 500 mA 이하, 최대 콜렉터 손실(PC max) 1 W미만의 트랜지스터를 파워트랜지스터에 비해 소신호 트랜지스터로 부르며 일반적으로 수지몰드 타입이 많은 것이 특색입니다.
파워트랜지스터
일반적으로 파워트랜지스터라고 할 때는 PC 1W 이상의 것을 가리킵니다. 소신호 트랜지스터에 비해 최대 콜렉터 전류와 최대 콜렉터 손실이 크고 발열에 대비하여 형상도 크고 금속으로 쉴드 되어 있거나 방열핀 이 첨부되기도 합니다.
:: 트랜지스터의 세부 분류
트랜지스터는 반도체 가운데에서도 가장 많이 쓰여왔던 기본적인 반도체 부품으로 증폭 작용을 발견하여 사용되기 시작 하였습니다. 트랜지스터에는 상당히 많은 종류가 있으며 용도나 특성에 따라 아주 많은 종류가 만들어지고 있으나 흔히 사용되며 비교적 쉽게 입수할 수 있는 것으로서 기본적인 분류를 한다면 아래와 같습니다.
  트랜지스터
접합형의 트랜지스터로「전류」를 증폭하는 작용이 있습니다 .

NPN 트랜지스터
접합의 구성에 의한 종류로 플러스 전원으로 동작합니다.
2SC××× :고주파 용(저주파용에도 사용할 수 있다)
2SD××× :저주파 용


PNP 트랜지스터
접합의 구성에 의한 종류로 마이너스 전원으로 동작합니다.
2SA××× :고주파 용(저주파용에도 사용할 수 있다)
2SB××× :저주파 용

고주파용과 저주파용의 구별은 명확하지 않으며 제조업체(등록업체)의 지정에 의해 정해집니다. 예를들면 200MHz 정도의 저주파용도 있는가 하면 30MHz 이하의 고주파용도 있습니다.
  전계효과 트랜지스터(FET)
진공관과 비슷한 원리로 입력 전압으로 출력 전류를 제어하는 특성을 갖고 있습니다.

접합형 FET : 입력 게이트가 반도체의 접합으로 구성되고 있는 FET 로 트랜지스터와 비교하여 훨씬 적은 입력 전류로 동작합니다.

MOS 형 FET: 입력 게이트가 산화 실리콘 박막으로 절연되어 있는 FET로 상당히 높은 입력 임피던스전류가 흐르지 않는)를 갖고 있는 것이 특징입니다.
:: 회로도 기호
회로기호
약호
명칭
기능
TR PNP 트랜지스터 증폭 및 스위칭
TR NPN 트랜지스터 증폭 및 스위칭
FET 전계 효과 트랜지스터 고 입력 임피던스, 증폭 및 스위칭용
FET 전계 효과 트랜지스터 고 입력 임피던스, 증폭 및 스위칭용
MOS FET 전계 효과 트랜지스터 고 입력 임피던스, 증폭 및 스위칭용
MOS FET 전계 효과 트랜지스터 고 입력 임피던스, 증폭 및 스위칭용

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

트랜지스터의 데이터시트 보는법

Posted by 노구라
2011. 11. 11. 08:35 기술지식/반도체전자전기
:: 트랜지스터의 데이터시트 보는법
TR의 특성은 콜렉터 전압, 이미터 전류(혹은 콜렉터 전류), 주위 온도 등에 따라서 크게 달라집니다.

따라서 TR의 특성을 나타낼 때는 위의 조건을 고려하고 일정한 기준을 정할 필요가 있는데 일반적으로 소출력 TR일 경우에는 콜렉터 전압 6V, 이미터 전류 1mA, 주위온도 25도의 조건 하에서 측정한 결과를 나타내고 있습니다. 수 mW이하의 출력을 낼 수 있는 TR은 소출력 TR이라고 하고 수십mW ~ 수백mW의 출력을 낼 수 있는 TR은 중출력, 수W 이상의 출력을 낼 수 있는 TR은 대출력 TR이라고 합니다.

TR은 종류가 많기 때문에 특성을 일일히 기억해 두었다가 이용하는 것은 현실적으로 거의 불가능합니다.

그러므로 TR을 이용할때는 각종 TR의 여러가지 특성을 수록한 TR의 데이터시트를 이용하지 않으면 안됩니다.
  형명
형명은 TR고유의 명칭입니다. 즉, 2SA12, 2SA49, 2SC1815 등의 이름을 말합니다.
  최대정격
TR을 사용할 수 있는 최고 한도의 값을 나타냅니다.
Ta = 25도인 경우 주위온도가 25도 일때 TR이 정상작동 할 수 있는 최고의 한계값을 나타냅니다. 만약 최대 정격 이상으로 동작하게 되면 TR의 특성이 변하거나 수명이 짧아지며 너무 지나치게 되면 TR이 파손될 수 있습니다.
  최대 VCBO
VCBO는 Vcmax라고 표시하는 경우도 있습니다. 이는 다음과 같은 뜻을 가지고 있습니다.
위의 그림과 같이 콜렉터와 베이스 사이에 역방향 전압 VCB를 공급하고 이 전압을 점점 높여가면 콜렉터와 베이스 사이에 흐르는 전류 ICBO는 아래의 그림과 같이 극히 적은 값으로 거의 일정하게 흐르다가 어느 한계점에 도달하면 역방향 전류가 급격히 증가하는 지점이 있습니다.
이 때 전류가 급격히 증가하기 시작하는 것은 PN접합부에 역방향 전압이 정도 이상으로 너무 높게 걸려서 강전계의 의하여 반도체 내에 공유결합을 하고 있던 전자가 튀어나와 전원의 -측으로부터 +측으로 이동하므로 역방향 특성을 읽기 때문입니다.

이때 역방향 특성을 잃어버리기 시작하는 한계점의 전압을 콜렉터와 베이스 사이의 항복전압이라고 합니다. 이와 같은 항복전압이 걸려있는 상태에서는 TR이 TR로서의 정상적인 동작을 할 수 없습니다.

따라서 TR이 정상적으로 동작할 수 있으려면 콜렉터에는 항상 항복전압보다 낮은 전압을 공급하지 않으면 안됩니다.
  최대 VEBO
아래 그림과 같이 콜렉터를 차단시킨 상태에서 이미터와 베이스 사이에 역방향으로 공급할 수 있는 최대 전압을 나타냅니다.
이것은 위에서 설명한 것과 같이 콜렉터를 차단시킨 상태에서 이미터와 베이스간 역방향의 항복전압보다 약간 낮은 전입입니다.

만약 최대 VEBO이상의 전압이 공급되면 역방향 특성이 없어지고 심하면 TR의 특성이 변하거나 파손됩니다.
  최대 Ic
Icmax라고도 표시하기도 합니다. 이는 콜렉터에 흘릴 수 있는 최고 한도의 전류를 나타낸 것입니다.

그 이상으로 전류를 흘리면 특성이 변화되거나 수명이 짧아지고 심하면 파손될 수도 있습니다.
  최대 Pc
Pcmax라고도 표시하기도 합니다. 이것은 콜렉터의 최대 허용 전력손실을 나타냅니다.

TR을 동작시킬때는 콜렉터에 전압을 공급하고 콜렉터 전류를 흘리기때문에 콜렉터에서는 상당한 전력이 소비됩니다.
이 때 소비되는 전력은 콜렉터측 PN접합부의 온도를 높이므로 소비전력이 어느정도 이상으로 증가하면 TR이 과열되어 파손되는 것입니다. 이와 같이 TR은 전력소비에 한도가 있는데 이것이 콜렉터의 최대 허용 전력손실입니다.

데이터 시트에 나와있는 최대 정격 Pc는 주위온도가 25도일때 콜렉터의 최대 허용 손실전력입니다.
이와 같은 콜렉터의 최대 허용 손실전력은 같은 TR일지라도 주위의 온도가 높을때는 TR이 쉽게 과열되므로 콜렉터의 호용 손실적력이 감소되는데 일반적으로 주위온도가 1도 상승하는데 약 2%정도의 비율로 허용 손실전력이 감소됩니다.

수십mW ~ 수백mW의 출력을 낼 수 있는 중출력용 TR이나 수W 이상의 출력을 낼 수 있는 대출력 TR이 각각 최대의 출력을 낼 때는 주위온도가 50~60도까지 상승하므로 중출력 TR이나 대출력 TR을 사용할 때는 주위온도를 50~60도로 간주하고 허용 손실 전력을 환산해야 합니다.
  ICBO
이것은 아래의 그림과 같이 이미터 측을 차단하고 콜렉터와 베이스 사이에 역방향전압 VCB를 공급했을 때 콜렉터에 흐르는 전류의 크기를 나타내는 것인데 이것을 콜렉터 차단전류라고 합니다.
차단전류는 동형의 TR일때 작은 것일 수록 성능이 좋은 것입니다.
  hfe
hfe는 아래의 그림과 같이 이미터 공통 접속(또는 이미터접지라고도 함) 회로에서 베이스에 펄스 전류 Ib를 흘릴때 콜렉터측에 증폭된 펄스전류 Ic를 측정하여 Ib로 Ic를 나누어 얻은 값을 나타냅니다.
따라서 이 값을 이미터접지때의 펄스 전류 증폭율 또는 직류 전류 증폭율이라고 합니다.
여러개의 TR을 이용하여 다단으로 증폭을 할 경우에 마지막단의 TR에는 앞에서 증폭된 큰 신호 전력이 공급되므로 마지막단의 TR, 즉 출력단의 TR은 큰 신호 전력이 공급될 때의 전류증폭율을 사용하는 것이 정확합니다. 따라서 마지막 단에 많이 이용하는 중출력 TR이나 대출력 TR은 대부분 충분히 큰 펄스 전류를 베이스에 흘리고 그때 흐르는 콜렉터의 펄스 전류를 측정하여 증폭율을 구하고 이것을 데이터시트에 hfe로 나타내는 것입니다.
그러므로 이것을 대신호 증폭율이라고도 합니다.
TR의 증폭율을 측정할때는 위의 그림에서 Ib = 2mA 일때 Ic = 100mA가 흐르고 전류를 증가시켜서 Ib = 3mA가 흐를때 Ic = 150mA가 흐른다고 가정하면,

hfe = 콜렉터 전류의 변화량 / 베이스전류의 변화량 = (150 - 100) / (3 - 2) = 50 / 1 = 50이 됩니다. 따라서 이때 이미터 접지때의 진류전류 증폭율은 50이라고 합니다.

여기서 변화시킨 베이스전류가 측정하는 TR의 베이스 전류로서 충분히 큰 편일때는 대신호 증폭율(hFE)이라고 하고 작은 편이면 소신호 증폭율(hfe)이라고 합니다.
  fT(트랜지션 주파수)
증폭하는 신호의 주파수가 높아지면 전류 증폭율이 점점 저하되는데 이미터 접지때에 주파수가 높아져서 증폭율이 1이 되는 때의 주파수를 트랜지션 주파수라고 합니다.
높은 주파수에서의 hfe는 주파수가 2배로 높아지면 증폭율은 1/2로 저하되므로 고주파에서의 fT = hfe x (측정 주파수)의 관계가 성립됩니다.

즉 측정주파수가 높을때는 대신 증폭율이 저하되어 측정주파수와 증폭율의 곱은 항상 fT로서 일정합니다.

따라서 fT는 증폭율과 측정 주파수를 곱한 것과 같기 때문에 이득대역폭이라고도 합니다. fT값이 높은 것일 수록 높은 주파수를 증폭할 수 있는 TR입니다.

θ
이것은 열저항이라 하는 것으로 TR의 전력손실에 의한 온도 상승율을 나타내는 것입니다.
예를 들어서 콜렉터 손실전력이 1W 증가하는데 따라 콜렉터 접합부의 온도가 3도 높아진다면 그 TR의 열저항(θ)은 3도/W라 합니다.

이와 같이 열저항이 표시되어 있을때는 콜렉터의 최대 허용 손실전력 (Pc)도 다음과 같이 계산하여 알 수 있습니다.

Pc = (Tj - Ta) / θ

(Pc = 최대허용 손실 전력, Tj = 접합부 온도, Ta = 주위 온도, θ = 열저항)
  PG (Power Gain)
TR의 베이스와 이미터사이(입력)에 신호 전력을 공급하면 콜렉터와 이미터(출력)사이에는 증폭된 전력이 나옵니다.
만약 TR입력측에 2W의 전력을 공급하였을 때 전력이 증폭되어 출력측에 100W의 전력이 나온다면 그 TR의 전력증폭도는 100 / 2 = 50이 된다고 합니다.
이와같이 입력측에 공급된 신호전력으로 출력측에 증폭되어 나오는 신호전력을 나누어 얻은 값을 전력 증폭도라 합니다. 전력 증폭도는 편의상 데시벨(db)라는 단위로 환산하여 나타내며 이것을 전력이득(PG : Power Gain)이라고 합니다.

전력 증폭도를 db로 환산하여 나타내면 음성 증폭기일 경우 귀에 느껴지는 정도를 곧 알 수 있으며 종합증폭도 계산이 간편해 진다는 장점이 있습니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

FET란 전계효과트랜지스터(Field effect transistor)를 가르키는 말

Posted by 노구라
2011. 11. 11. 08:35 기술지식/반도체전자전기
FET란 전계효과트랜지스터(Field effect transistor)를 가르키는 말인데 FET는 일반적인 접합트랜지스터와 외관은 거의 유사하지만 내부구조와 동작원리는 전혀 다른 것입니다. FET는 각종 고급 전자기계와 측정장비, 자동제어회로 등에 이용되고 있습니다.

이와같은 FET는 구조에 의해 분류하면 접합FET(J-FET)와 MOS FET의 두 종료가 있으며 이것들은 각각 전류의 통로가 P형 반도체로 된 P체널형과 전류의 통로가 N형 반도체로 된 N체널 형이 있습니다.

P체널형은 정공이 전류를 운반하는 것으로 PNP형 TR과 비슷하고 N체널형은 전자가 전류를 운반하는 것으로 NPN형의 TR과 비슷합니다.
:: P체널형 접합 FET
위의 그림은 P체널 접합 FET의 구조입니다. 이것은 P형 반도체의 측면에 N형 반도체를 접합하고 P형 반도체의 양단과 측면에 부착된 N형 반도체로부터 각각 리드를 내놓은 것인데 측면에 나온 리드는 게이트(G: Gate)이고 P형 반도체의 양단에서 나온 두개의 리드중 한쪽은 소스(S: Source)라 하며 다른 한쪽은 드레인(D : Drain)이라고 합니다.

위의 그림의 우측은 P채널 접합 FET를 나타내는 기호입니다. 게이트에 표시된 화살표는 게이트 접합부의 순방향을 나타낸 것으로 P채널 형임을 알려 주는 것입니다.

화살표가 TR에서 밖으로 나오는 방향으로 있을때는 P체널 형이고, 밖에서 TR쪽으로 들어가는 방향일때는 N체널 형입니다.

FET가 동작할 때는 드레인과 소스간에 전류가 흐르는데 위의 그림에서는 전류가 흐르는 통로가 P형 반도체로 되어 있기 때문에 P체널 형이라고 합니다. FET의 명칭 가운데서 2SJ11, 3SJ11등과 같이 J형으로 되어 있는 트랜지스터는 P체녈 형의 FET입니다.

위의 그림과 달리 게이트가 2개로 되어 있는 경우도 있습니다. 게이트가 2개로 되어 있는 것은 2개의 게이트가 내부에서 연결되어 있지 않고 개별적으로 나와있는 것입니다.
:: N체널형 접합 FET
위의 그림은 N형 반도체의 측면에 P형 반도체를 접합하고 N형 반도체의 양단과 측면에 있는 P형 반도체로부터 각각 리드를 내놓은 것인데 이것은 N체널 접합 FET입니다.

FET의 명칭 가운데서 2SK11, 3SK14등과 같이 K형으로 되어 있는 트랜지스터는 N체녈 형의 FET입니다.
:: MOS FET
위의 그림은 MOS(Metal Oxide Semiconductor)형 FET의 구조입니다. P형 반도체의 기판에 N형 반도체를 만들고 N형 반도체의 표면에 알루미늄으로 된 게이트를 부착시킨 것인데 N형 반도체와 게이트사이에는 실리콘 산화물의 엷은 막을 형성시켜서 절연도가 매우 높게 하였습니다.

위의 그림의 좌측에는 N형 반도체 양단에서 나온 두개의 리드중 한쪽은 드레인이고 다른 한쪽은 소스인데 이와같은 구조로 된 것을 디플레이션(depletion)형 MOS FET이라고 합니다.

그림 중간의 것은 인핸스먼트(enhancement)형 MOS FET라고 하는 것의 구조도로, 이것은 N체널이 없는 것으로 되어있으나 동작시에는 실리콘산화물의 엷은 막 옆에 N체널이 형성됩니다.

FET와 접합 트랜지스터를 비교하면 FET의 드레인은 TR의 콜렉터와 같고, 소스는 이미터와 같으며, 게이트는 베이스와 같습니다. 그리고 P체널형은 PNP형과 비슷하고 N체널형은 NPN형 TR과 비슷하기 때문에 PNP형 TR의 콜렉터에 -전압을 공급하는 것과 마찬가지로 P체널 FET의 드레인에는 -의 전압을 공급하고, NPN형 TR의 콜렉터에 +전압을 공급하는 것 처럼 N체널 FET의 드레인에는 +전압을 공급해야 합니다.
:: FET의 동작원리
위의 그림과 같이 N체널 접합 FET의 드레인과 소스에 드레인이 +가 되는 방향으로 전압을 공급하면 (이것을 드레인 전압이라고 함) N형 반도체 내에 산재하여 있는 과잉전자가 소스전극에서 드레인전극 측으로 이동하여 드레인 전류 ID가 흐릅니다.

이 때 아래의 그림과 같이 게이트와 소스간에 역방향 전압을 공급하면(이것을 게이트전압이라고 함) 게이트의 -전압에 의해 N체널 내에 전자가 반발당하여 공핍층이 생깁니다. 이때 생긴 공핍층은 전자가 없는 부분으로 절연영역이므로 전자가 이동할 수 있는 통로(체널)가 좁아져서 드레인전류 ID는 감소합니다. 여기에서 만약 역방향 전압을 더욱 증가시킨다면 통로는 더욱 좁아져서 ID는 더욱 감소하게 됩니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

트랜지스터의 기본 설계법

Posted by 노구라
2011. 11. 11. 08:34 기술지식/반도체전자전기
:: 트랜지스터 회로 설계시 유의사항
  몇 볼트까지 사용할 것인가?
컬렉터·이미터간 최대정격전압(Vceo)를 기준으로 하며
실제로는 이것의 1/2 이하의 전압에서 사용하는 것이 좋습니다.
  몇 암페어까지 흐르게 할 것인가?
이것은 2가지 관점에서 생각해야 합니다.
먼저 컬렉터 최대정격전류(Ic)를 초과해서는 않되며 실제 사용시에는 1/2 이하에서 사용해야 합니다.
또 하나는 콜렉터 손실(Pc)을 기준으로 최대 전력을 초과하여 사용하지 않도록 하는 것입니다. 이것의 사용전압 × 전류로 계산하여 역시 1/2 이하에서 사용해야합니다.
그러나 이것은 방열판의 유무와 주위 온도에따라 큰 차이가 있으므로 데이터 쉬트를 확인하는 것이 좋습니다.
  증폭률을 얼마로 사용할 것인가?
직류전류증폭율(hfe)로 단순하게 입력전류의 몇 배가 되어 출력되는지 계산하면 되지만 트랜지스터마다 편차가 있으므로 최소값을 기준으로 해야합니다.
  어느정도의 주파수까지 증폭할 것인가?
이것은 이득 대역폭 (fT)을 기준으로 하여 다음과 같이 산출 합니다.
사용 가능한 주파수 = 이득 대역폭(fT) ÷ 직류 전류 증폭 율(hfe)
:: 디지탈 회로에서 사용법
트랜지스터를 디지탈 회로에서 사용하는 목적은 주로 다음과 같은 것이 있으며 그에 따른 사용법을 설명합니다.
  큰전류나 높은전압의 제어
세그먼트 발광 다이오드의 제어, 모터나 릴레이등의 드라이브, 전원의 On/Off,조명등의 제어
전압레벨의 변환 : 광센서나 마이크의 신호 증폭 및 변환
직류전압 증폭 : A/D 변환 입력 신호 증폭및 센서 출력의 증폭
  큰 부하 제어
여기서 말하는 큰부하라는 것은 수 10mA 이상의 전류가 흐르거나 5V 이상의 전압이 필요한 부하를 말하며 디지탈 IC로는 직접 드라이브할 수 없는 모터의 제어나 릴레이또는 솔레노이드 코일등의 드라이브가 여기에 해당됩니다.

이와 같은 경우 트랜지스터의 사용법은 다음 그림과 같이 사용하는 것이 기본이며 부하전류의 방향에 따라서 (a),(b)의 두가지 사용법이 있고 사용하는 트랜지스터도 NPN형과 PNP형으로 각각구분하여 사용해야 합니다.
트랜지스터의 선정은 드라이브하는 전압과 전류를 고려하여 선정하며 전류 증폭율이나 주파수 특성은 생각할 필요가 없습니다.
동작 원리는 (a)의 경우 디지탈 IC의 출력이 High 가 되면 4.5V 이상의 전압이 되어 이것이 저항을 통하여 트랜지스터에 Ib가 흐르게하여 트랜지스터가 On되고 Ic가 흘러서 부하가 작동합니다.

역으로 디지탈 IC의 출력이 Low로 되면 트랜지스터의 Vbe(0.6V 정도)보다 작은 출력전압 (0.2V 정도)이 되기 때문에 Ib는 흐르지 않아서 트랜지스터가 Off되어 부하전류도 흐르지 않게 됩니다.

(b)의 경우에는 반대로 디지탈 IC의 출력이 High가 되면 트랜지스터는 Off 되어 부하전류는 흐르지 않으며,디지탈 IC 출력이 Low로 되면 트랜지스터가 On 되어 부하에 전류가 흐르게 됩니다.

R1과 R2의 저항치 결정은 트랜지스터가 On되었을때 베이스 전류(Ib)=부하 전류(Ic)÷직류 전류 증폭 율(hfe) 로 정해지는 전류 Ib보다 약간 큰 전류가 흐르도록 저항값을 설정해야 합니다. 이 저항이 없으면 디지탈 IC에 과전류가 흐르게 되어 디지탈 IC가 발열로 파손됩니다.

예:부하전류가 100mA 이고 hfe=100, Ib=1mA 라 하고 IC의 전원을 5V라고 하면 ,Vbe는 약 0.6V로 일정이기 때문에 R1 = R2 = (5V - 0.6V) ÷ 1mA = 4.4KΩ 이나 약간 여유를 주어서 3.3 KΩ 정도면 적당할것입니다.


* 주의사항

트랜지스터로 드라이브하는 부하가 모터나 릴레이처럼 코일부하일때는 역기전력에 주의할 필요가 있습니다.즉 코일의 전류를 On/Off할때 순간적으로 역방향의 높은 전압이 코일의 양단에 발생하는데 이것을 그데로 방치하면 트랜지스터의 컬렉터-이미터간에 가해져서 경우에 따라 트랜지스터가 파손될수도 있습니다.
또한 이 역기전력은 노이즈로 작용하여 주변 회로의 오동작을 유발 할 수도 있습니다. 따라서 이것을 방지하기 위해 다음 그림과 같이 다이오드를 코일의 양단에 병렬에 접속합니다. 또한 이 다이오드는 최대한 코일에 가까운 위치에 붙여서 역 기전력을 흡수시켜야 합니다.
:: 전압레벨 변환 방법
각종 센서류는 출력 전압이 낮아서 디지탈 회로에 직접입력으로 사용하기 부적절한 경우가 많으며 이때 트랜지스터로 전압레벨을 증폭하여 사용합니다. 이때는 결국 직류전압증폭기로 사용하는것이 되기 때문에 본래의 기본증폭 회로로 구성하면 되나 On/Off를 판정하는 정도면 족하기 때문에 회로를 간략화 할 수 있습니다.

실제로 사용하는 회로는 그림과 같이 되며 입력으로 사용된 센서의 출력 전압이 평상시는 거의 0V이고 검출시에 0.6V 이상 일때와 0.6V 이하 일 때 회로가 조금 다르게 됩니다.
(a)의 회로에서 센서의 출력이 평상시 0V에 가깝기 때문에 트랜지스터는 Off 되어 디지탈 IC의 입력은 거의 전원전압에 가까워저서 High로 되고, 센서 검출시에 출력이 0.6V 이상이 되면 트랜지스터가 On으로 되어 디지탈 IC의 입력은 거의 0V가 되고 Low로 됩니다.

R1과 Rc의 저항치 결정방법은 먼저 Rc는 디지탈 IC의 입력전류는 수 10μA 이하이기때문에 트랜지스터가 Off되었을 때 Rc 를 경유하여 디지탈 IC에 전류가 흐를 수 있도록 수 10KΩ 이하의 저항이면 적당하며 보통은 5KΩ∼20KΩ 정도가 쓰여집니다.

R1은 센서의 출력 전류에 의하여 결정되며 너무 작게 하면 센서에 무리를 주어 감도가 떨어질수 있습니다. 대부분은 수10KΩ 정도면 적당하며 일반적으로 10KΩ ~ 50KΩ 정도가 쓰여지지만 센서의 규격에 최적 부하저항치가 있으면 그에따른 저항치를 사용하며 이때는 센서의 부하는 R1과 트랜지스터의 입력 저항이 병렬이 되므로 이점도 주의하여 결정해야 합니다, 참고로 트랜지스터의 입력저항은 수 10KΩ정도 입니다.
(b) 회로에서 저항치의 결정 방법은 R1과 Rc는 (a)와 같지만 R2는 수 10KΩ의 가변저항을 사용하여 평상시에 트랜지스터가 Off되고 센서감지시에 On으로 되도록 조정하는 것이 필요합니다.이때 R1 과 R2의 비가 0.6대 Vcc의 비와 거의 같은 정도가 되도록 하는 것이 좋습니다.

R1 과 트랜지스터 입력저항(수 10KΩ)의 병렬 저항이 센서의 부하가 되기 때문에 센서의 부하 드라이브 능력을 넘지 않게 R1 이 수KΩ (많게는 2KΩ~ 5KΩ정도)이 되도록 합니다.

센서의 출력 신호가 1msec 이하의 짧은 펄스일때는 사용할 트랜지스터의 주파수 특성을 고려할 필요가 있지만 그 이외에는 주파수 특성을 걱정할 필요가 없으며 사용전압과 전류증폭율이 적당한 것을 사용하면 좋을것입니다. 출력전류는 디지탈 IC정도라면 수 10μA 정도면 충분하기 때문에 걱정하지 않아도 될 것입니다.
:: 아날로그 회로에서 사용법
아날로그 신호를 증폭하기 위한 기본 회로는 대부분 이미터 접지 회로를 사용하며 최대한 깨끗하게 입력 신호를 증폭하도록 해야 합니다.

그 기본회로는 다음 그림과 같으며 회로정수의 결정방법은 아래와 같은 순서로 행합니다.여기로 미리 사용할 전원전압(Vcc)은 정해 있는 것으로 하고 사용할 트랜지스터의 전류 증폭율(hfe)은 100으로 가정합니다. 트랜지스터의 선정시는 주파수 특성이 중요하고 이득 대역폭 (fT)이 높은것을 사용할 필요가 있습니다.

예:
fT가 200MHz 이고 hfe가 100이라면,200MHz ÷ 100 = 2MHz 로 되어
실제로 사용할 수 있는 주파수는 2MHz 정도가 됩니다.
따라서 10MHz 이상의 주파수로 사용하려면 ft는 1GHz 이상이 필요하게됩니다.
  1. 컬렉터 저항(Rc)의 결정
이것은 부하전류(Ic)를 고려해서 결정해야 합니다.
파워가 필요한 드라이브일때는 수 100mA 정도가 필요하며 통상은 수 mA ~ 수 10mA 정도가 일반적입니다.
Rc는 무신호시 출력전압이 전원 전압의 1/2이 되도록 하면 되며

Rc = (Vcc/2) ÷ Ic 로 계산하면 구할 수 있습니다.

(예:Vcc = 5V Ic = 2mA 라면 Rc = 1.25KΩ = 약1KΩ)
  2. 이미터 저항(Re)의 결정
이 저항은 입력신호가 1V 이상이 되어도 출력이 포화하지 않도록 하여 신호를 깨끗하게 증폭 할 수 있도록 합니다. 값의 결정은 러프하게 생각해도 좋으며 통상 Rc의 1/5 ∼ 1/10 정도면 족합니다. (예:1KΩ ÷ 5 = 200Ω)
  3. 베이스 저항(R1과 R2)의 결정
먼저 필요한 베이스 전압(Vb)을 구합니다.
무신호시 Re에는 Ic의 전류가 흐르고 있고 베이스 이미터간 전압은 약 0.6V로 거의 일정하기 때문에

Vb = Ic×Re+0.6로 됩니다.(예: 2mA × 200Ω+0.6 = 1.0V)

다음에 필요한 베이스 전류(Ib)를 전류 증폭율(hfe)에 의해 계산하면

Ib = Ic ÷ hfe(예:2mA÷100 = 0.02mA hfe=100)가 됩니다.

여기에서 베이스 저항은 베이스 전류의 10배 이상의 전류가 흐르게 하여 베이스전류 및 베이스 전압이 변동하지 않도록 하며 R1,R2는 다음과 같이 계산합니다.

R1 = (Vcc - Vb) ÷(10×Ic), R2 = Vb ÷ (10 × Ic)
(예:R1=(5V-1V)÷10×0.02mA=20KΩ R2=1V÷(10×0.02mA)=5KΩ )
  4.커플링 콘덴서(Cin)의 용량결정
교류신호를 증폭하는 경우는 직류전압과 무관하게 하기 위해 커플링 콘덴서(Cin)가 필요해집니다.이 값은 입력신호의 최저 주파수(fc)에 대하여 충분히 무시할 수 있는 임피던스가 되도록 해야 합니다. 입력용 콘덴서 Cin 은 트랜지스터의 입력 임피던스를 Rin이라고 한다면

fc > 1÷(2π × Rin × Cin) 이 되도록 정해야 하며 입력 임피던스 Rin은 대략 R1과 R2의 병렬 저항값이 됩니다.

예:fc를 20Hz라고 할때 Cin > 1/(6.3 × 4KΩ × 20Hz) = 2μF
Cin = 4.7μF 정도를 사용하면 좋습니다,)
  5. 바이패스 콘덴서(Ce)의 결정
이미터의 콘덴서도 최저 주파수에 대하여 충분히 낮은 인피던스가 되도록 정해야 하며
Ce > 1÷(2π × fc × Re)로 구합니다.

예: Ce>1/(6.3×20Hz×200Ω)=40μF → Ce=100μF)

《참고》직류증폭시는 Cin이나 Ce는 불필요 하기 때문에 사용하지 않아도 좋습니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

Transistor Databook

Posted by 노구라
2011. 11. 11. 08:34 기술지식/반도체전자전기
2SA
 2SA12-2SA99  2SA100-2SA200  2SA201-2SA300  2SA301-2SA400  2SA401-2SA500
 2SA501-2SA598  2SA603-2SA700  2SA701-2SA800  2SA801-2SA900  2SA901-2SA999
 2SA1001-2SA1100  2SA1102-2SA1200  2SA1201-2SA1300  2SA1301-2SA1400
2SB
 2SB16A-2SB100  2SB101-2SB200  2SB201-2SB300  2SB301-2SB400  2SB401-2SB498
 2SB502-2SB600  2SB601-2SB700A  2SB701-2SB800  2SB801-2SB900  2SB901-2SB1000A
 2SB1001-2SB1100
2SC
 2SC11-2SC100  2SC101-2SC200  2SC201-2SC300  2SC301-2SC400  2SC401-2SC600
 2SC601-2SC700  2SC701-2SC800  2SC801-2SC900  2SC901-2SC1000  2SC1001-2SC1100
 2SC1101-2SC1200  2SC1201-2SC1300  2SC1301-2SC1400  2SC1401-2SC1500  2SC1501-2SC1600
 2SC1601-2SC1700  2SC1701-2SC1800  2SC1801-2SC1900  2SC1901-2SC2000
2SD
 2SD11-2SD100A  2SD101-2SD200A  2SD201-2SD300  2SD301-2SD400  2SD401-2SD500
 2SD501-2SD600  2SD701-2SD800  2SD801-2SD900B  2SD901-2SD1000  2SD1001-2SD1100
 2SD1101-2SD1200  2SD1201-2SD1300  2SD1301-2SD1400  2SD1401-2SD1500
2SJ
 UP07-2SJ100  2SJ101-2SJ200
2SK
 UN07-2SK97  2SK101-2SK199  2SK201-2SK300  2SK301-2SK400  2SK401-2SK500

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

커넥터의 종류 및 용도

Posted by 노구라
2011. 11. 11. 08:33 기술지식/반도체전자전기
커넥터의 종류는 용도에 따라 엄청나게 다양한 종류가 있습니다. 그 중에서 흔히 사용되는 대표적인 커넥터를 소개하도록 하겠습니다.
 
  동축 콘넥터
많은 종류의 동축 콘넥터가 있지만 그림은 많이 사용되고 있는 BNC 타입의 동축 콘넥터입니다. 좌측이 잭이며 가운데가 플러그,우측이 플러그를 조립한 모습입니다. 이것을 판넬에 직접 설치하고 판넬이 접지되도록 합니다.주로 고주파 신호용으로 사용됩니다.
  D-SUB 커넥터
컴퓨터와 주변기기를 접속할때에 많이 쓰여지는 콘넥터로 수십개의 핀으로 구성되어 있습니다. 그림에서 좌측은 25 핀 D-SUB 콘넥터로 PC의 병렬 포트에 사용되고 있으며 우측은 36핀의 센트로닉스 커넥터로 프린터에 사용되고 있습니다.
  기판-케이블용 커넥터
기판과 케이블을 접속할때 사용하는 콘넥터로 핀수는 1핀에서 수십핀까지 다양합니다.그림은 직선형이지만 직각으로 구부러져 있는 형태도 있습니다.
  오디오 잭
주로 오디오용 접속에 사용하며 그림의 가운데가 잭으로 판넬에 고정합니다.좌측이 플러그, 우측이 조립한 플러그 입니다.오디오용이기 때문에 외부 배선에는 실드선을 사용하기 편리한 구조로 되어 있습니다.RCA 핀잭 이라는 것도 있으며 내구성이 좋고 고주파에 사용할 수 있는 타입입니다.
  스테레오 플러그 잭
스테레오 오디오 접속용으로 사용하며 앰프나 음향기기의 외부 접속용으로 사용됩니다. 우측 2개가 잭으로 기판이나 판넬에 조립하고 사용하며 좌측에 있는 것은 플러그입니다.
  DC 전원용 플러그 잭
외부에서 DC 전원을 공급할때 사용하는 커넥터 입니다. 그림의 좌측2개가 플러그이며 우측은 잭으로 이것을 판넬에 고정하고 사용합니다.플러그 측은 케이블과 일체로 조립된 것도 있으며 특별한 경우가 아니면 그런것을 사용하는 것이 깨끗하고 좋습니다.
  리본 케이블 커넥터
IDC(Insulation Displacement Connector)라고도 불리는 커넥터로 PCB간의 신호 전송을 위한 접속에 사용됩니다. 대표적인 예로 PC의 하드디스크의 연결에 사용되고 있습니다.
  FFC 커넥터
일반적인 케이블과 달리 얇은 필름 형태의 케이블을 사용하는 커넥터입니다. 케이블의 부피가 매우 작기 때문에 휴대폰과 같은 소형기기의 내부 접속용으로 사용되고 있습니다.
  DIN 커넥터
외부기기와의 접속을 위한 커넥터입니다. 좌측 사진은 크기가 작은 Mini DIN 타입으로 PC에서 키보드와 마우스의 접속에 사용되고 있습니다.
  Circular 커넥터
비교적 대형의 커넥터로 기계나 군용 장비의 신호 전달용이나 전원 접속용으로 주로 사용됩니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

디지털 IC TTL과 CMOS

Posted by 노구라
2011. 11. 11. 08:32 기술지식/반도체전자전기

디지털 IC TTL과 CMOS

디지탈 IC의 큰 분에는 TTL(Transistor Transistor Losic)과 CMOS(Complementary Metal Oxide Semiconductor)가 있습니다.

이외에도 고집적도를 얻기 위하여 메모리나 마이컴 관련 IC에 사용되는 N채널 MOS를 시초로 한 초고속 응답용과 컴퓨터나 카운터에 사용되고 있는 ECL(Emitter Coupled Losic) 등 여러가지가 있으나 특수한 용도나 목적에 사용되고 일반적인 디지털 로직은 TTL이나 CMOS 로직으로 한정됩니다.

TTL은 1964년 미국의 TI(Texas Instruments)사에 의해서 발표된 이래, 우수한 성능과 적정한 가격, 500종류 이상이나 되는 풍부한 품종, 다수의 메이커가 생산함으로서 쉽게 구입할 수 있고, 시대에 따른 고속성, 에너지 지향의 개량형의 개발 등에 의해서 오늘날에도 디지탈 제어용의 IC의 주류를 이루고 있숩니다.

이에 대해서 CMOS 로직은 1996년에 미국의 RCA사와 모토로라사에 의해 발표된 것으로서 저소비 전력과 사용전압 범위가 넓어 급속도로 발전하였고 요즘에는 고 집적도의 LSI화와 TTL에 뒤떨어지지 않는 고속 응답형의 개발 등에 의해서 TTL을 능가하는 보급률을 보이고 있습니다.

TTL은 NPN형 트랜지스터를 중김으로 만들어졌고, CMOS는 FET(전계효과 트랜지스터)를 사용하여 만들어졌습니다.

이 두가지 로직의 특징을 간단히 비교하면 다음과 같습니다.
 

항목

TTL

CMOS

  전원전압

  4.75 ~ 5.25V   종래형 : 3 ~ 18V
  고속형 : 2 ~ 6V

  Threshold Level

  1.2 ~ 1.4V   전원전압의 약 1/2
  입출력간 전달지연시간   LS형 -- 10ns
  AS, AL형 -- 3 ~ 3.5ns
  종래형 : 100ns
  고속형 : 8ns
  최고 응답 주파수   LS형 -- 45MHz
  ALS형 -- 100MHz
  종래형 : 2MHz
  고속형 : 45MHz
  소비전류   LS형 -- 3.2mA(H레벨출력)                1.6mA(50%듀티)   0.0005 ~ 0.0003 micro A
  품종   매우 풍부(500종 이상)   실용상 충분한 품종
  사용온도 범위   섭씨 0 ~ 70도   섭씨  - 40 ~ 85도
  장점   전달 지연 시간이 짧다   구조가 간단하여 집적화가 쉽다
  단점   노이즈 마진이 작다
  선로 임피던스에 영향받기 쉽다
  소비전력이 크다
  정전 파괴가 쉽다
  고온에 약하다
  TTL의 종류
TTL은 바이폴라형 트랜지스터를 스위칭 소자로 사용한 디지탈 제어용 IC의 일종으로, 특히 고속 응답성과 사용이 간편한게 특징입니다. 오랜 세월의 경험을 토대로 여러가지 용도에 맞는 품종이 만들어지고 있지만 대개의 차이점이나 특색을 알아놓지 않으면 제어회로의 본질을 이해할 수 없으므로 대표적 품종 몇가지에 대하여 알아보도록 하겠습니다.

TTL은 오늘날 세계의 많은 메이커에 의해서 생산되고 있지만 그 대부분이 TI사의 세컨드 소스라고 볼 수 있습니다. 그러므로 특성은 물론이고 형명이나 파트넘버에 대해서도 TI사의 기준에 준하고 있어 TTL에 대해서 연구할 때는 TI사의 자료를 참고하는 것이 가장 적당하다고 할 수 있습니다.

TI사의 TTL에는 2개의 계열과 7개의 시리즈가 있습니다. 2개의 패밀리란 표 2에 나타낸 바와 같이 54시리즈와 74시리즈가 있습니다. 54시리즈는 74시리즈에 비하여 성능이나 온도 특성 등이 우수한 것으로 군용으로 사용되고 있으며 일반적으로는 거의 사용되지 않습니다. 일반적으로 대부분 74시리즈라고 할 수 있습니다.

계열

사용온도 범위

전원전압

패키지

54계열

- 55 ~ 125

5V (+/-) 10%

J형,W형,T형

74계열

0 ~ 70

5V (+/-) 5%

J형,N형

J:세라믹 DIP, N:플라스틱 DIP, W:세라믹 플랜트 패키지, T:메탈 플랜트 패키지

이들의 가장 큰 차이점은 위의 표에서도 알 수 있듯이 사용온도 범위입니다.

패키지는 54계열에서는 내습성이 우수한 세라믹 패키지나 메탈 패키지가 표준으로 되어 있지만 74계열에서는 패키징이 용이하고 가격이 저렴한 플라스틱 DIP(Dual Inline Pakage) 패키지가 주류를 이루고 있습니다.

74패밀리에도 해상기기나 옥외결로의 염려가 되고 있는 기기에 세라믹 패키지가 채용되는 경우도 있지만 최근 플라스틱의 질적향상은 눈부시게 발전하여 가까운 장래에 세라믹은 자취를 감추게 될 것입니다. 패키지의 형상면에서는 DIP타입이 가장 일반적입니다. 소규모 IC는 14핀, 중규모 IC에서는 16핀, 거기에 마이크로 컨트롤러 등의 IC는 20핀~40핀이 많이 사용됩니다. 핀의 간격은 각 메이커에서 통일되어 있지만 패키지 외형치수는 재질이나 메이커가 달라 약간 다르기도 합니다.

시리즈

게이트

플립플롭

속도*전력곱

전달지연 시간

소비전력

클럭입력 주파수

Standard TTL 54/74

100pJ

10ns

10mW

0 ~ 35MHz

High Speed TTL 54/74H

132pJ

6ns

22mW

0 ~ 50MHz

Low Power TTL 54L

33pJ

33ns

1mW

0 ~ 3MHz

Schottky TTL 54/74S

57pJ

3ns

19mW

0 ~ 125MHz

Low-Power Schottky TTL 54/74LS

19pJ

95ns

2mW

0 ~ 45MHz

Advanced Schottky TTL 54/74AS

33pJ

15ns

22mW

0 ~ 200MHz

Advanced Low-Power Schottky TTL 54/74ALS

4pJ

4ns

1mW

0 ~ 100MHz



TTL에는 위의 표와 같이 7개의 시리즈가 있으며 주로 전기적 특성에 의해서 구분됩니다. 당초에는 스탠다드형과 고속응답의 H형, 저소비전력의 L형의 3종류가 만들어 졌지만 그 후 트랜지스터의 베이스-콜렉터간에 순전압강하의 낮은 쇼트키 장벽 다이오드를 조합시켜 고속 스위칭을 실현한 S형과 저소비전력형의 LS형의 2종류가 추가되었습니다.

그러나 최근에는 CMOS 로직도 고속화가 되어 TTL의 장점이 약화되었습니다. 이에 따라 고속, 저소비전력으로 강화된 ALS형과 AS형이 동시에 발표되었습니다. 그러나 품종이 적기 때문에 그다지 사용되고 있지는 않습니다.

위의 표에 나온 패밀리 외에도 74시리즈는 원래 TTL만 있었지만 그 후 CMOS형의 HC패밀리가 개발되었습니다. 이것은 CMOS의 단점인 동작속도를 TTL이상의 수준으로 고속화한 것입니다. 또한 HC패밀리는 지금까지의 TTL과 같은 핀 배치를 사용하고 있기때문에 교환성이 매우 우수하여 근래에는 기존의 TTL을 대체하고 있습니다.
사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

디지털 IC의 취급방법

Posted by 노구라
2011. 11. 11. 08:32 기술지식/반도체전자전기
디지털 IC의 취급방법
1. IC취급시의 일반적인 주의사항 최대 정격을 넘는 전압이나 전류에서는 사용하지 않는다.
또한 IC는 역전압에 매우 약하기 때문에 전원전압의 극성에 주의해야 합니다.
   
2. 납땜시에는 최대한 단시간에 끝낸다.
IC의 열에 대한 최대 한계는 보통 260도에서 약 10초간입니다. 이 범위를 넘게 되면 IC가 손상을 입을 수 있습니다.
   
3. 고온 다습한 장소에서 사용하거나 보관하는 것은 피한다.
고온 다습한 장소에 두면 IC의 패키지를 통해 수분이 내부까지 침입하는 경우도 있습니다.
   
4. 기계적인 충격을 주지 않는다.
최근의 IC는 기계적 진동에 대한 상당한 내성이 있지만 과도한 충격을 주면 당연히 손상을 입게 됩니다.
   
5. 핀 번호에 유의한다.
배선시에는 핀 번호가 정확한지 충분히 확인해야 합니다.
   
6. CMOS에서는 정전기로 인한 입력 단자의 파괴에 주의한다.
CMOS의 입력단자는 약간이기는 하지만 정전용량을 가지고 있습니다. 정전기의 축적에 의한 고전압으로 입력단자가 망가지지 않도록 주의해야 합니다. 최근의 CMOS에는 정전에 대한 보호회로를 갖춘 것도 있지만 보호범위에 한계가 있어 너무 안심하지 않아야 합니다.
   
7. 원칙적으로는 출력핀끼리 접속하지 않는다.
오픈 콜렉터나 오픈 드레인 형태의 출력핀이 아니라면 원칙적으로 출력핀끼리 접속해서는 안됩니다.
  로직 IC를 사용한 회로 설계시의 유의점
TTL의 팬 아웃
TTL의 출력핀을 다른 입력핀에 접속한 경우 출력핀이 'L'일 때는 입력핀에서 출력핀으로 전류가 흘러 들어갑니다. 입력핀에서 흘러 나가는 전류를 토출전류, 출력핀으로 흘러 들어가는 전류를 흡입전류라고 합니다.

출력핀이 신호 'H'일 경우는 출력핀에서 입력핀으로 전류가 흘러 들어갑니다.

74LS 시리즈의 경우 입력핀의 토출전류는 최대 0.4mA, 흡입전류는 최대 20uA이며 출력핀의 토출전류는 최대 400uA, 흡입전류는 최대 8mA입니다.

입력핀 1개당 0.4mA를 토출한다고 가정하명 8mA / 0.4mA = 20개의 출력핀이 신호 'L'일때 접속할 수 있는 최대 입력핀 수가 됩니다. 그러므로 출력핀에 접속하는 입력핀의 수를 무제한으로 증가시킬 수는 없습니다.

이 최대 입력핀의 수를 팬 아웃(Fan-Out)이라고 합니다.

CMOS의 팬 아웃
CMOS의 입력저항은 매우 높기 때문에 전류가 거의 흐르지 않습니다. 그렇기 때문에 팬아웃이 매우 클 것으로 보입니다.
그러나 CMOS의 입력핀에는 정전용량이 있습니다. 입력신호가 L에서 H로, H에서 L로 변할때 이 정전용량에 의한 충방전 전류가 흐르게 됩니다. 이 때문에 CMOS의 경우 약 50개 내외의 팬 아웃을 가지고 있습니다.

사용하지 않는 핀의 취급
사용하지 않는 게이트의 핀은 실제적으로 개방시켜놓아도 큰 문제는 없습니다.
그러나 개방상태의 입력핀은 TTL에서는 'H', CMOS에서는 불안정한 상태에 있게 되므로 트러블의 원인을 제공할 수도 있습니다. 그러므로 사용하지 않는 핀은 'H'나 'L'의 적당한 곳에 연결해 두어야 합니다.

전원의 바이패스
디지털 IC에서는 다루는 신호가 'H'에서 'L'로 혹은 'L'에서 'H'로 바뀌는 순간에 일시적으로 스위칭 전류라는 큰 전류가 흐르게 됩니다. IC와 전원장치간에는 어느 정도의 거리가 있습니다. 즉 아무리 전류가 흐르는 속도가 빠르더라도 전원장치에서 IC까지 스위칭 전류를 공급하는데는 시간이 필요합니다.

만약 전류를 공급하는 것이 늦어지면 IC는 오동작을 하게 됩니다. 이런 경우 IC근처에 캐패시터를 접속해 두면 거기로부터 필요한 스위칭 전류를 얻을 수 있습니다. 이와 같은 용도로 사용되는 캐패시터를 바이패스 캐패시터라고 합니다. 바이패스에는 보통 0.01~0.1uF 정도의 세라믹 캐패시터를 주로 사용합니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기
이 댓글을 비밀 댓글로

디지털 IC의 데이터시트 보는 법

Posted by 노구라
2011. 11. 11. 08:32 기술지식/반도체전자전기
디지털 IC의 데이터시트 보는 법
핀 배치
IC를 사용하는 데 있어서 없어서는 안되는 것은 핀 배치에 관한 것입니다. 그러므로 배선하기 전에 반드시 핀 배치를 확인해야 합니다.
 
최대 정격 (Absolute maximum ratings)
IC를 사용함에 있어 반드시 지켜야 하는 규격이 최대 정격입니다. 순간적이라도 이 최대정격을 넘는 조건에서 IC를 사용하면 IC가 손상되거나 성능이 크게 떨어지게 됩니다.
 
TTL(74LS 시리즈)의 예
전원전압 VCC 7V
입력전압 Vin 5.5V
3스테이트형이 OFF일경우 출력핀의 허용전압
Off-State Output Voltage
15V
보존온도 -65 ~ +150도
 
CMOS(4000시리즈)의 예
전원전압 VDD -0.5 ~ +20V
입력전압 Vin -0.5 ~ VDD + 0.5V
입력 전류 Iin +-10mA
보존온도 -65 ~ +150도
 
권장 동작 조건 (Recommended operating conditions)
IC를 안정적으로 동작시키기 위해서는 권장 동작 조건의 범위내에서 사용해야 합니다.
 
권장 동작 조건의 예
TTL(74LS시리즈) CMOS(4000시리즈)
전원 전압 4.75 ~ 5.25V 3 ~ 18V
동작 온도 0 ~ 70도 -40 ~ 85도
 
CMOS의 경우 권장 동작 전원전압의 범위는 시리즈에 따라 크게 다르기 때문에 주의해야 합니다.
 
시리즈 권장 전원전압
4000 3 ~ 18V
4000H 2 ~ 8V
74HC 2 ~ 6V
74HCT 4.5 ~ 5.5V
74AC 2 ~ 5.5V
 
전기적 특성
데이터시트에는 논리레벨, 흡입전류, 토출전류, 소비전력, 전달 지연 시간등 IC의 전기적 특성이 기록되어 있습니다.
 
VIH - 입력이 'H'일때의 전압
VIL - 입력이 'L'일때의 전압
IOH - 출력핀이 'H'일때의 토출전류
IOL - 출력핀이 'L'일때의 흡입전류
PW - 소비 전력
tPD - 전달 지연시간
 
스위칭 특성
게이트에서는 입력신호가 들어온 후 출력신호가 나오기까지 약간의 시간이 걸립니다. 그 시간을 전달 지연시간이라고 부릅니다. 그리고 전달 지연 시간에 관한 전기적 특성을 스위칭 특성이라고 부릅니다.
 
예를 들어 펄스 하나를 게이트 IC에 입력하는 경우
그림과 같이 펄스는 실제로는 타이밍 차트상에서 완전한 사격형이 아닌 사다리꼴의 모양이 됩니다. 이것은 신호가 스위칭될때 약간의 시간이 걸리기 때문입니다. 완전한 신호 'H'일때의 전압을 기준으로 10%에서 90%로 올리기까지 필요한 시간을 상승시간(tTLH 또는 trc)라 합니다. 반대로 90%에서 10%로 내리기까지 필요한 시간을 하강시간(tTHL 또는 tfc)라고 합니다.
 
정논리와 부논리, 엣지
위 그림의 IC는 74LS138라는 TTL IC입니다. G2A와 G2B단자에 ○표시가 있습니다.
이는 해당 핀이 부논리에서 동작한다는 것을 의미합니다. 즉 해당핀이 'L'이 되어야 Enable됨을 의미합니다.
마찬가지로 출력핀에도 ○표시가 있는데 이는 해당 핀이 부논리로 작동함을 의미합니다.
위의 IC는 74LS74라는 IC입니다. CLOCK1,2핀에 삼각형모양의 표시가 있습니다. 이것은 펄스에 의한 동작을 의미하는 데 신호변화에 따라 다음과 같은 종류가 있습니다.
즉 74LS74의 경우 상승엣지이므로 해당 핀이 L에서 H로 변하는 순간 작동하게 됩니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기

'기술지식 > 반도체전자전기' 카테고리의 다른 글

트랜지스터의 기본 설계법  (0) 2011.11.11
Transistor Databook  (0) 2011.11.11
커넥터의 종류 및 용도  (0) 2011.11.11
디지털 IC TTL과 CMOS  (0) 2011.11.11
디지털 IC의 취급방법  (0) 2011.11.11
디지털 IC의 데이터시트 보는 법  (0) 2011.11.11
대표적인 로직 IC  (0) 2011.11.11
코일과 트랜스  (0) 2011.11.11
발진소자와 필터  (0) 2011.11.11
스위치(Switch)란?  (0) 2011.11.11
릴레이란  (0) 2011.11.11
이 댓글을 비밀 댓글로

대표적인 로직 IC

Posted by 노구라
2011. 11. 11. 08:31 기술지식/반도체전자전기
대표적인 로직 IC
 

명 칭

기능 설명

비    고

74HC00 Quad 2-Input NAND Gate 2입력의 NAND 게이트가 4개 들어있다.
74HC04 Hex Inverters 인버터 회로가 6개 들어있다.
74HC08 Quad 2-Input AND Gate 2입력 AND게이트가 4개 들어있다.
74HC14 Hex Schmitt-trigger Inverters 슈미트 트리거 인버터가 6개 들어있다.
74HC32 Quad 2-Input OR Gate 2입력 OR게이트가 4개 들어있다.
74LS42 BCD to DECIMAL Decoder 입력한 BCD코드에 의해 선택된 출력이 L로 된다.
7445 O.C.BDC to DECIMAL Decoder/Driver 7442의 open collector buffer 타입. 출력단자의 최대 유입전류는 80mA
74LS47 BCD to Segment Decoder/Driver 7세그먼트 LED의 드라이버 open collector 타입
74HC73 Dual JK-FFs With Clear JK 플립플롭을 2개 내장
74HC86 Quad 2-Input Exclusive OR Gate 2입력의 Exclusive OR게이트가 6개 들어있다.
74LS90 Decade Counter 비동기 2진+5진 카운터 비동기 프리셋 9 비동기 클리어
74HC93 4-Bit Binary Counter 비동기 2진+8진 카운터
74HC123 Dual Retriggaerable Single Shot 입력의 상승시점에서 Cext, Rext에 접속하는 C, R의 값에 따라 출력을 지속하는 single shot register
74HC125 Quad 3-State Noninverting Buffers 6개의 3-스테이트 버퍼가 들어있다.
74HC138 1-of-8 Decoder / demultiplexer 3개의 입력신호로 8개의 출력중 한개를 선택한다.
74HC244 Octal 3-state noninverting buffer / Line Driver 8비트의 3-state 버퍼
74HC245 Octal 3-state noninverting bus tranciever 8비트의 양방향 3-state 버퍼
74LS290 Decade Counter 7490의 핀 레이아웃을 바꾼 타입
74HC390 Dual Decade Counters 7490을 2개로내장한 타입이다. 단, 프리셋 9는 생략되어 있다.
74HC573 Octal 3-state noninverting transparent latch 8비트의 3-state 래치. 부논리에 의해 래치된다.
74HC574 Octal 3-state noninverting D Flip-flop 8비트의 3-state D 플립 플롭으로 상승 엣지에 래치된다.
74HC595 8-Bit Serial in / pararell out shift register 8비트의 래치를 가지는 시프트 레지스

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기

'기술지식 > 반도체전자전기' 카테고리의 다른 글

Transistor Databook  (0) 2011.11.11
커넥터의 종류 및 용도  (0) 2011.11.11
디지털 IC TTL과 CMOS  (0) 2011.11.11
디지털 IC의 취급방법  (0) 2011.11.11
디지털 IC의 데이터시트 보는 법  (0) 2011.11.11
대표적인 로직 IC  (0) 2011.11.11
코일과 트랜스  (0) 2011.11.11
발진소자와 필터  (0) 2011.11.11
스위치(Switch)란?  (0) 2011.11.11
릴레이란  (0) 2011.11.11
IGBT(Insulated Gate Bipolar Transistor)는?  (0) 2011.11.11
이 댓글을 비밀 댓글로

코일과 트랜스

Posted by 노구라
2011. 11. 11. 08:31 기술지식/반도체전자전기
코일과 트랜스
코일이란 동선과 같은 선재(線材)를 나선 모양으로 감은 것입니다.

코일의 성질 정도를 나타내는 단위로 헨리(Henry:H)가 사용됩니다. 선재를 감으면 감을수록 코일의 성질이 강해지며 헨리의 값도 커집니다. 코일은 내부에 아무것도 넣지 않은 공심으로 하는 것보다 철심에 감거나 코어라 부르는 철분말을 응고시킨 것에 감는 편이 보다 큰 헨리값이 얻어집니다. 통상 전기회로에서 사용하는 코일은 마이크로 헨리(μH)부터 헨리(H)까지 폭넓게 사용됩니다.

코일을 인턱터(Inductor) 또는 인덕턴스(Inductance)라고 하는 경우가 있습니다(엄격히 말해서, 인덕턴스라고 하는 것은 코일 성분의 정도를 나타내는 것이며, 부품 그 자체를 나타내는 말은 아닙니다).
코일에 교류전류가 흐른 경우, 코일에 발생하는 자속이 변화합니다.
  그 코일에 다른 코일을 가까이 했을 경우, 상호유도작용(Mutual Induction)에 의해, 접근시킨 코일에 교류전압이 발생합니다.
이 상호유도작용의 정도를 상호 인덕턴스(단위는 헨리:H)로 표시합니다.

코일이 하나만 있는 경우에도 자신이 발생하는 자속의 변화가 자신에게 영향을 줍니다.
이것을 자기유도작용이라고 하며, 그 정도를 자기 인덕턴스(Self Inductance)로 나타냅니다.

헨리의 정의는 어떤 코일에 매초 1A의 비율(1A/s)로 전류가 변화할 때, 다른 쪽의 코일에 1V의 기전력을 유도하는 두 코일간의 상호 인덕턴스를 1헨리(H)로 한다고 되어 있습니다.
자기 인덕턴스의 경우는 전류의 변화율이 1A/s일 때 1V의 기전력을 발생하는 경우의 자기 인덕턴스를 1H로 한다고 되어 있습니다.
  코일의 성질
선재를 나선 모양으로 감으면 원래의 선재가 지닌 특성과는 전혀 다른 여러 가지 특성이 나오게 됩니다.
여러 특성 가운데서 몇가지 주요 특성에 대해 살펴보면 다음과 같습니다.
(1) 전류의 변화를 안정시키려고 하는 성질이 있다
  전류가 흐를려고 하면 코일은 전류를 흘리지 않으려고 하며, 전류가 감소하면 계속 흘릴려고 하는 성질입니다. 이것을 "렌츠의 법칙"이라 부르는데, 전자유도작용에 의해 회로에 발생하는 유도전류는 항상 유도작용을 일으키는 자속의 변화를 방해하는 방향으로 흐른다는 것입니다.

이 성질을 이용하여 교류로부터 직류로 변환하는 전원의 평활회로에 사용됩니다. 교류를 정류기에 의해 직류로 변환한 경우, 그대로는 맥류(리플:Ripple)라고 하여 교류성분이 많은 직류이며 완전한 직류가 아닙니다.
플러스의 직류로 정류한 경우, 마이너스 전압성분은 없어지지만, 0V와 플러스 전압을 왕래하고 있습니다. 평활회로는 콘덴서와 코일을 조합한 회로를 사용하면 코일이 전류의 변화를 저지하려는 작용을 하고, 콘덴서가 입력전압이 0V로 되어도 축적한 전기를 그때 토출하기 때문에 안정한 직류를 얻을 수 있습니다.

간단한 평활회로에서는 코일 대신에 저항기를 사용하여, 콘덴서의 평활 기능만 이용하는 경우도 있습니다.
 
(2) 상호유도작용이 있다
  이것은 앞에서도 언급했지만, 두 코일을 가까이 하면 한쪽 코일의 전력을 다른 쪽 코일에 전달할 수 있다는 것입니다. 이 성질을 이용한 것이 트랜스입니다. 전력을 공급하는 쪽의 코일(입력)을 1차측, 전력을 꺼내는 쪽(출력)을 2차측이라고 합니다. 1차측 권수와 2차측 권수의 비율에 따라 2차측의 전압이 변화합니다. 전원트랜스 등은 2차측에서 권선의 도중에 선을 내어(tap이라고 한다) 복수의 전압을 얻을 수 있도록 한 것이 많습니다.
 
(3) 전자석의 성질이 있다
  전류가 흐르면 철이나 니켈등의 자성체를 흡착하는 성질을 말합니다. 이 성질을 이용한 것으로 계전기(릴레이)가 있습니다. 전류가 흐를 때에 철판을 끌어당겨 철판에 부착된 스위치를 닫도록 하는 것입니다.
 
(4) 공진하는 성질이 있다
  코일과 콘덴서를 조합하면 어떤 주파수의 교류전류가 흐르지 않거나, 쉽게 흐르기도 합니다. 라디오의 방송국을 선택하는 튜너는 이 성질을 이용하여 특정한 주파수만을 선택하고 있는 것입니다.
 
  코일의 종류
  분류   명칭   기능 및 용도
  코 일 인덕터 초크코일 고주파에 대하여 저항 작용을 하고픈 고주파를 감쇠시키는데도 사용한다.
용도 : 고주파 필터.
고주파 동조 코일 IFT 코일과 콘덴서를 병렬 접속하고 어느 특정 주파수에 동조하여 신호를 추출하기 위해 사용한다.
용도 : TV나 라디오의 동조 회로등.
바 안테나 동조용이지만 내부에 코어를 삽입하고 특히 길게 하여 안테나와 동등의 특성을 갖게 한 것으로 휴대용 라디오의 안테나로 사용되고 있다.
전원용 초크 저주파에 대해서도 특히 큰 저항을 나타내도록 하여 전원 노이즈 방지용의 필터나 평활 회로의 필터에 사용한다.
  트랜스 전원 트랜스 여러가지 코일을 동일한 철심에 감은 것으로 전압의 변환 기능을 갖는다.이것을 이용하여 전압 을 높이거나 낮추는데 사용한다.
스위칭
전원용 트랜스
전원용 트랜스와 동일이지만 주파수가 높기 때문에 소형으로 효율이 좋은 코어를 사용하고 있다.
오디오용 트랜스 트랜지스터 회로등으로 임피던스가 크게 다른 경우 전달 로스를 적게 하기 위해 임피던스 변환용으로 쓰여지는 트랜스로 최근에는 회로의 발전으로 많이 쓰여지지 않게 ?다.
  회로도 기호
회로도에 쓰여지는 기호는 아래와 같은 것이 쓰여지지만 다소 다른 형태도 있습니다.

    회로도 기호     약호     명칭     기능
        RFC     초크 코일     고주파 저지용 코일,  필터용 코일
        L     동조 코일 IFT     고주파 동조 용,  속칭 FCZ 코일
        TR     전원 트랜스     전원 전압 변환용
 
고주파 초크 코일(RFC)
단순한 고주파 필터용 코일입니다. 종류는 하기 다양한 형태의 것이 있으나 단순한 코일로서 용량 범위는 수 μH ~ 수 mH 까지 있습니다. 수 μH 이하에서는 공심 인 것도 있지만 통상은 코어가 사용되고 있습니다.
고주파 동조용 코일
고주파 회로의 전달시 효율을 좋게할 목적으로 쓰여지는 코일입니다. 주로 사용되는 것에는 FCZ코일 이라고 불리는 것이 있으며 좌측 사진에서 케이스에 들어가 있는 것이 FCZ 코일입니다. 사진의 왼쪽것은 특정 주파수용 발진출력용으로 만들어진 것입니다. FCZ 코일에는 10mm높이와 7mm 의 2종류가 있으며 5mm 짜리도 있으나 잘 사용되지 않습니다.
중간 주파수 동조 코일
IFT라고 불리는 코일로 FCZ 코일과 마찬가지로 금속 케이스에 들어가 있습니다. 차이는 중간주파수로 쓰여지는 455kHz나 10.7MH 에 동조한 콘덴서가 미리 병렬 접속되어 있는 것입니다. 사진은 코일의 바닥 사진으로 좌측은 FCZ 코일이며 우측이 IFT로 IFT 쪽에는 콘덴서가 한가운데 장착되어 있는 것을 볼 수 있습니다.
바 안테나 코일
휴대용 라디오의 동조 코일로 특히 코어를 크게 하여 수신 감도가 좋아지게 되어 있습니다.형태나 크기에는 많은 종류가 있으나 일반적으로 바리콘과 병렬 접속되어 동조 주파수를 가변할 수 있도록 되어있어서 라디오 방송 전파를 선택할 수 있습니다. 사진은AM 라디오 용 바 안테나입니다.
전원용 초크 코일
전원 주파수 대역에서 충분한 인덕턴스를 갖고 있는 코일로 코어에 동선을 감아서 만들어집니다. 입력 전원용 필터나 스위칭 전원의 출력 필터로 사용되고 있습니다. 좌측2개는 전원필터용이며 오른쪽의 2개는 고주파 동조용입니다.
전원 트랜스
전원 트랜스주파수가 낮고 전류 용량이 큰 대형 코일로 출력 전압과 전류 용량에 따라 많은 전원 트랜스종류가 있습니다.AC 전원으로부터 DC 전원을 만들는 때 필수적인 부품이전원 트랜스나 최근에 시판되는 전원장치의 대부분은 스위칭 전원으로 되어있으며 무겁고 전원 트랜스 대형의 전원 트랜스를 사용하는 방식은 점차 줄어들고있는 추세입니다.
오디오 트랜스
오디오용 트랜스로 근래에는 오디오 증폭기의 회로가 많이 개선되어 거의 사용되지 않고 있습니다. 오디오용 트랜스의 용도는 트랜지스터 앰프의 출력임피던스와 스피커의 임피던스의 정합에 사용됩니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기

'기술지식 > 반도체전자전기' 카테고리의 다른 글

커넥터의 종류 및 용도  (0) 2011.11.11
디지털 IC TTL과 CMOS  (0) 2011.11.11
디지털 IC의 취급방법  (0) 2011.11.11
디지털 IC의 데이터시트 보는 법  (0) 2011.11.11
대표적인 로직 IC  (0) 2011.11.11
코일과 트랜스  (0) 2011.11.11
발진소자와 필터  (0) 2011.11.11
스위치(Switch)란?  (0) 2011.11.11
릴레이란  (0) 2011.11.11
IGBT(Insulated Gate Bipolar Transistor)는?  (0) 2011.11.11
SCR의 특성곡선  (0) 2011.11.11
이 댓글을 비밀 댓글로

발진소자와 필터

Posted by 노구라
2011. 11. 11. 08:30 기술지식/반도체전자전기

발진소자와 필터
일정한 주파수의 신호를 출력하기 위해 쓰여지는 소자로 발진 방법에 따라 다양한 소자가 있습니다. 일반적으로 세라믹 진동자와 수정 진동자가 사용되고 있으며 안정도와 주파수 정밀도를 비교 하면 아래표와 같습니다.

발진소자 주파수 안정도 주파수 정밀도
RC 또는 LC 발진 100ppm/℃ ±2∼5%
세라믹 진동 자 30ppm/℃ ±0.5%
수정 진동 자 수ppm/℃ ±0.001%이하
수정 발진 유닛 3ppm/-20∼60℃ 3ppm 이하

회로도 기호 약 호 명 칭 기 능
X-TAL 크리스탈 수정 발진 자,고주파 발진 용
XFIL
FIL
크리스탈 필터

세라믹 필터
고주파용 필터
 
세라믹 진동자
수정 진동자의 정밀도가 불필요할 때는 값이 비교적 싼 세라믹 진동자가사용되고 있습니다. 수정에 비하여 특성이 좋지 않지만 10-5/℃정도의 온도 안정도가 있기 때문에 RC 발진 회로와 비교하면 훨씬 우수한 특성을 낼 수 있습니다.또한, 전압 제어 발진 회로에서 주파수를 가변할 경우 세라믹 진동자가넓은 주파수가변 범위를 얻을 수 있습니다.
수정 진동자
쉽게 입수할 수 있는 안정된 발진 소자로서 많이 애용되고 있는 진동자 입니다. 간단하게 10-6/℃ 정도의 온도 안정도를 얻을 수 있으며 주파수 범위도 넓으며 발진 회로도 비교적 간단하기 때문에 많은 면에서 사용되고 있습니다.형태나 크기에도 여러 가지 있고 다음 그림과 같은 종류가 있습니다.
 
수정 진동자의 구조
수정진동자는 크게 수정편(Blank) , 전극(Electrodes), 지지계(Base)의 세가지로 구성되어 집니다. 보편적으로 전극형성 물질로는 은(Ag)을 가장 많이 사용하며, 제품에 따라서는 금(Au), 알루미늄(Al), 크롬(Cr), 니켈(Ni), 또는 두가지 이상의 혼합층도 사용되고 있습니다.
수정 발진 유닛
최근 많이 쓰여지고 있는 것으로 미리 수정 진동자와 전자 회로를 조합시켜서 유닛화 한 것이 있습니다. 안정된 발진을 위한 전자회로가 내장되어 있으며 전원만 접속하면 신호가 출력되기 때문에 편리하게 사용할 수 있습니다.
 
TCXO (Temperature Compensated Crystal Oscillator)
수정 발진 유닛의 일종으로 내부에 온도 보상회로를 내장하여 온도변화에 따른 발진주파수 변동을 최소화한 형태입니다. 이동통신 시스템 및 기지국, 정밀 계측기 등에 사용됩니다.
 
DTCXO
TCXO와 유사한 기능을 가지고 있으나 차이점은 발진 회로에 내장되는 수정의 온도 특성을 수치화하여 메모리 IC에 기록한후 온도가 변화될 때마다 메모리에서 이에 상응하는 수치를 출력하여 보상해주는 방식이며 TCXO보다도 더욱 출력 주파수 오차가 낮습니다.
 
OCXO (Oven-Controlled Crystal Oscillators)
이 제품은 수정이 온도에 민감하게 변화하는 특성을 역이용한 것으로 Oven을 사용하여 수정 주변의 온도를 일정하게 유지시켜 오차가 발생하지 않도록 해주는 방식이며 수정 응용 제품 중에서 가장 정밀도가 높지만 부피가 크고 전력소모가 큰 단점이 있습니다.
 
 
VCXO (Voltage Controlled Crystal Oscillator)
역시 수정 발진 유닛의 일종으로 입력전압으로 발진 주파수를 변경할 수 있는 특징이 있습니다. ISDN, ADSL, 이동통신 시스템, 통신 기지국, 가전통신제품 등에 주로 사용됩니다.
 
 
  수정 발진 유닛의 특성
주파수 안정도 (Stability)
온도, 전압 , 출력로드(Output Load)등의 변화에 따른 중심 주파수로부터 편차를 말합니다. (단위: ppm)
 
동작 온도범위 (Operating Temperature range)
OSC제품이 사용되는 SET의 환경적인 허용 온도 범위에서 주파수와 출력 파형 특성이 안정적으로 동작하는 범위를 말합니다. (단위 :℃)
 
상승시간 (Rise Time-Tr)
출력파형의 Low Level에서 High Level까지 걸리는 시간을 말합니다. (단위 : ㎱)
 
하강시간(Fall Time-Tf)
출력파형의 High Level에서 Low Level까지 걸리는 시간을 말합니다. (단위:㎱)
 
파형대칭비 (Duty Cycle , Symmetry)
파형의 1 주기에서 기준 Level ( TTL:1.4V, CMOS : 0.5Vdd)에서 파형의 시간 간격의 비율(%)을 말합니다.
 
소비전류 (Input current)
동작시에 소모되는 전류량을 말합니다. (단위 : ㎃ )
 
트라이 스테이트 기능( Standby function(E/D, Tri-state))
오실레이터의 Option기능으로서 외부의 작용에 의해 발진 중 일시적으로 동작을 멈추게 하는 기능을 말합니다.
 
스타트 타임 (Startup Time)
전압의 인가에 따라 연속 파형이 최종 파형의 90%가 될때까지의 시간을 말합니다. (단위 : ㎳)
 
필 터
특정 주파수의 신호만 추출하기 위해 쓰여지는 것이 필터입니다. 이것에도 세라믹 필터와 크리스탈 필터가 있습니다.
 
세라믹 필터
많이 쓰여지며 입수가 쉬운것은 AM,FM 라디오의 중간 주파수 필터로 사용되는 455KH와 10.7MHz 필터가 주류입니다. 아래 그림의 좌측에 있는것이 10.7MHz용, 우측에 있는것이 455KHz용 이며 필터 특성에 따라 크기와 형태에 차이가 있습니다.
 
크리스탈 필터
무선기기의 수신기에 주로 사용되고 있으며 상당히 좁은대역의 주파수만을 통과시키는 필터를 만들 수 있어서 고성능수신기에 이용되고 있으며 몇 종류의주파수에 한정되어 있습니다.
 
세라믹 검파 소자
필터와는 조금 다르지만 AM/ FM 검파회로에사용하는 간이 검파 소자로 쓰여집니다.
 
MCF (Monolithic Crystal Filter)
MCF란 수정 진동자를 응용한 제품으로 하나의 수정편에 두 개의 전극을 만들어 두 개의 대칭된 주파수를 형성하게 함으로써 여러 개의 주파수를 분리하여 필요한 주파수만 선택적으로 통과시키고 원하지 않는 주파수는 저지시켜 통신기의 혼선과 잡음을 없애고 송수신 강도를 높이는 기능을 가집니다.
사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기

'기술지식 > 반도체전자전기' 카테고리의 다른 글

디지털 IC TTL과 CMOS  (0) 2011.11.11
디지털 IC의 취급방법  (0) 2011.11.11
디지털 IC의 데이터시트 보는 법  (0) 2011.11.11
대표적인 로직 IC  (0) 2011.11.11
코일과 트랜스  (0) 2011.11.11
발진소자와 필터  (0) 2011.11.11
스위치(Switch)란?  (0) 2011.11.11
릴레이란  (0) 2011.11.11
IGBT(Insulated Gate Bipolar Transistor)는?  (0) 2011.11.11
SCR의 특성곡선  (0) 2011.11.11
SCR의 동작원리  (0) 2011.11.11
이 댓글을 비밀 댓글로

스위치(Switch)란?

Posted by 노구라
2011. 11. 11. 08:29 기술지식/반도체전자전기
전기회로의 개폐나 접속상태를 변경하기 위해서 사용하는 기구로 작동 방식에 따라 수많은 종류가 있습니다.
 
  스위치의 종류
Tactile Switch  
다목적으로 널리 사용되는 스위치입니다. 비교적 가격이 저렴하고 작은 힘으로도 작동이 가능한 것이 특징입니다. 크기와 특성에 따라 많은 종류가 있습니다.
   
Push Switch  
역시 여러 분야에 널리 사용되는 스위치입니다. 누르면 켜지는 타입, 누르면 꺼지는 타입, 잠금 장치가 있는 타입 등 종류가 매우 다양합니다.
   
Micro Switch  
비교적 소형의 스위치로 아주 작은 힘에도 민감하게 작동합니다. 주로 충돌이나 접촉을 감지하는데 사용됩니다.
   
   
Slide Switch  
소형 기구의 전원연결용으로 주로 사용됩니다.
   
   
Rocker Switch  
전열기기, 컴퓨터 전원장치등 전원연결용으로 사용되는 Switch로 컴팩트한 크기와 가격이 저렴한 것이 장점입니다.
   
   
Toggle Switch  
전원연결용, 판넬 조작용 등으로 널리 사용되는 스위치입니다.
   
   
Magnetic Switch  
다른 스위치와는 달리 두개의 부분으로 서로 나뉘어져 있으며 이 두개의 부분이 서로 접근했을때 내장된 자석에 의해 스위치가 작동하게 됩니다.
   
   
Dip Switch  
마이크로 컴퓨터등에서 각종 설정을 위하여 사용하기 편리한 스위치로 DIP형 IC의 형태를 띄고 있는 것으로 각각의 비트마다 독립적으로 On/Off가 가능합니다.접점 용량이 작기 때문에 대전류용으로는 부적합합니다.

위의 사진에 나온 스위치는 로터리 형 DIP스위치로 주로 0~F까지의 4비트 16진수 설정에 이용됩니다.
   
Rotary Switch  
판넬에 설치하여 순서적으로 전환하여 선택하는 용도로 사용합니다.감도의 전환이나 주파수의 선택등 측정기에 사용하기 편리합니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기

'기술지식 > 반도체전자전기' 카테고리의 다른 글

디지털 IC의 취급방법  (0) 2011.11.11
디지털 IC의 데이터시트 보는 법  (0) 2011.11.11
대표적인 로직 IC  (0) 2011.11.11
코일과 트랜스  (0) 2011.11.11
발진소자와 필터  (0) 2011.11.11
스위치(Switch)란?  (0) 2011.11.11
릴레이란  (0) 2011.11.11
IGBT(Insulated Gate Bipolar Transistor)는?  (0) 2011.11.11
SCR의 특성곡선  (0) 2011.11.11
SCR의 동작원리  (0) 2011.11.11
사이리스터란  (0) 2011.11.11
이 댓글을 비밀 댓글로

릴레이란

Posted by 노구라
2011. 11. 11. 08:29 기술지식/반도체전자전기
다양한 반도체가 등장하면서 사용이 많이 줄었지만 컴퓨터등을 사용하여 외부 기기를 제어할 때 자주 사용되는 부품입니다.릴레이는 코일에 전류를 흘리면 자석이 되는 성질을 이용하고 있습니다. 코일이 전자석으로 되었을 때 철판을 끌어당겨, 그 철판에 붙어있는 스위치부의 접점을 열거나 닫습니다.
 
릴레이의 좋은점은 전기적으로 독립된 회로를 연동시킬수 있다는 점입니다. 5V와 같은 저전압계로 구성된 회로의 동작에 의해 AC 100V계의 회로를 ON/OFF시키든가, 대전류의 회로를 ON/OFF시킬 수 있습니다. 그것은 코일 부분과 접점 부분이 완전하게 절연되어 있어서 전기적으로 외부기기와 절연할 수 있기 때문입니다.

그러나 릴레이에는 다음과 같은 결점이 있습니다.
 
동작속도가 느립니다.
아무리 고속고속 제품이라도 수 ms의 동작 시간을 필요로 합니다.이것은 기계적으로 작동하는 한계가 있기 때문입니다.
 
노이즈가 발생합니다.
접점이 접촉한 순간에 스파크가 발생하여 그로인한 노이즈가 발생합니다.이러한 스파크의 발생을 억제하기위하여 다이오드와 스파크 킬러가 많이 이용됩니다.
  릴레이의 종류
메커니컬 릴레이
다음그림은 프린트 기판 실장 타입 릴레이의 예입니다.
접점의 허용 전류에 따라 다양한 크기와 종류가 있으며 동시에 움직이는 점점의 수에 따른 종류도 다양합니다.
솔리드스테이트 릴레이(SSR)
반도체로 구성된 릴레이로,그 원리는 포토 커플러와 유사하며 발광 다이오드와 광(光)트리거 타입의 트라이액을 마주보게 하여 몰드 한 것입니다.소형이며 스파크가 발생하지 않고 수명이 반영구적인 장점이 있으나 일반 릴레이에 비하여 고가입니다.

 
포토 MOS 릴레이
포토 셀과 발광 다이오드를 마주보게 몰드한 것으로 포토셀에는 MOS형 FET가 내부에서 접속되어 있습니다.
이 MOS형 FET에는 내압이 400V이상의 것도 있어서 고압 고전류 제어도 할 수 있습니다.
  릴레이를 사용할 때의 유의점
접점 정격용량
접점의 정격은 모두 최대값으로 표기하고 있고 순간적이라도 과전류, 과전압 부하를 개폐하면 접점면이 아크나 줄 열 (Joule's heat)에 의해 소모나 전이를 일으켜 용착하거나 특성 열화가 현저히 발생하게 됩니다. 따라서 접점정격 >= 최대개폐전압 X 최대개폐 전류로 사용하도록 하는 것이 바람직합니다.
사용전압이 DC 200V을 넘는 경우 사용 최대개폐전류가 수 mA이하로 되거나 부하의 전류에 따라 동작 수명 회수가 크게 제한되므로 주의해야 합니다.

최대 통전전류는 접점 폐성 중에 전류를 연속 통과시킴으로써 과전류가 되었을 경우에는 접점 자계와 코일 자계와의 상호작용에 의해 채터링을 일으키거나 주울 열이 발생하여 접점이 현저히 소모 열화하거나 코일이 손상되게 됩니다.
 
접점의 보호회로
접점을 거쳐 과도적 현상이 있는 부하회로나 일반적으로 DC 200V를 넘는 부하 전압회로를 개폐하는 경우는 접점의 수명을 확보하여 접점의 장해를 방지하기 위한 보호회로가 필요합니다.

ㄱ) 유도부하의 경우 -
릴레이, 솔레노이드 등의 유도성 부하를 OFF 시키는 경우 평상시의 약 10배 정도의 역기전력이 발생하며, 역기전압이 200V를 넘으면 글로우 또는 아크 방전이 발생하여 접점이 파괴되는 원인이 됩니다. 그러므로 역기전압을 낮게 억제하거나 방전시간을 짧게 하는 보호회로를 삽입해야 합니다.

ㄴ) 램프, 히터 부하의 경우 -
램프(텅스텐) 부하에서는 정상전류에 도달할 때까지 약 10배의 돌입전류가 흐르며, 이 전류가 릴레이의 최대개폐전류를 넘으면 접점에 용착 현상이 일어납니다.

용량성 부하의 경우, 접점과 부하가 긴 테이블 등으로 이어져 있을 때에는 선간의 부유용량에 의한 서지 전류가 발생합니다. 보통 이러한 경우에는 접점에 가까운 곳에 서지 서프레서를 삽입하는데 일반적으로 10mH 정도의 인덕터를 사용합니다.
또한,콘덴서를 포함한 회로에서 접점의 개폐가 빈번한 경우에도 콘덴서의 충방전 때에 돌입 전류가 흐르므로 보호회로가 필요합니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기

'기술지식 > 반도체전자전기' 카테고리의 다른 글

디지털 IC의 데이터시트 보는 법  (0) 2011.11.11
대표적인 로직 IC  (0) 2011.11.11
코일과 트랜스  (0) 2011.11.11
발진소자와 필터  (0) 2011.11.11
스위치(Switch)란?  (0) 2011.11.11
릴레이란  (0) 2011.11.11
IGBT(Insulated Gate Bipolar Transistor)는?  (0) 2011.11.11
SCR의 특성곡선  (0) 2011.11.11
SCR의 동작원리  (0) 2011.11.11
사이리스터란  (0) 2011.11.11
여러가지 광전자소자  (0) 2011.11.11
이 댓글을 비밀 댓글로

IGBT(Insulated Gate Bipolar Transistor)는?

Posted by 노구라
2011. 11. 11. 08:28 기술지식/반도체전자전기
전력용 반도체 중의 하나인 IGBT(Insulated Gate Bipolar Transistor)는 주로 300V 이상의 전압 영역에서 널리 사용되고 있으며, 고효율, 고속의 전력 시스템에 특히 많이 사용되고 있습니다.
1970년대에 전력용 MOS FET가 개발된 이후 전력용 스위치는 중전압 이하, 고속의 스위칭이 요구되는 범위에서는 MOS FET가, 중~고압에서 대량의 전류도통이 요구되는 범위에서는 바이폴러 트랜지스터나 SCR, GTO등이 사용되어 왔습니다.

1980년대 초에 개발된 IGBT는 출력 특성면에서는 바이폴러 트랜지스터 이상의 전류 능력을 지니고 있고, 입력 특성면에서는 MOS FET와 같이 게이트 구동 특성을 가지고 있습니다.
따라서 IGBT는 MOS FET와 바이폴러 트랜지스터의 대체 소자로서 뿐만 아니라 새로운 분야도 점차 사용이 확대되고 있습니다.
 
  IGBT의 특징
MOS는 고내압화 하면 온(On) 저항이 급속히 커지는 문제가 있어서 200V 정도가 실용의 한계로 보고 있는 반면 IGBT는 MOS에 비해 온 저항이 낮지만 MOS와 동등의 전압제어 특성을 지니고 있으며 또한 스위칭 특성에서는 MOS보다는 늦지만 바이폴러 트랜지스터나 GTO보다 빠른 이점으로 중소용량의 인버터를 중심으로 산업용에서부터 일반 가정용에까지 폭 넓게 사용될 수 있습니다.
  IGBT의 적용분야
 
IGBT의 기본적인 특성은 적용 시스템의 전압에 따른 소자 내압(Breakdown voltage)를 기본으로 하여
   
1) 도통 상태의 소자 전압 강하(On-state voltage drop)인 VCE(sat)에 의해 결정되는 정특성
2) IGBT의 On/Off 스위칭 속도에 의해 결정되는 동특성
3) 단락회로 견고성
 
등으로 나뉘어 질 수 있습니다.

이들 관계는 상호 Trade-off관계를 가지고 있습니다. 즉, 일반적으로 낮은 VCE(sat)를 갖는 IGBT는 스위칭 오프 손실이 크고, 높은 VCE(sat)의 IGBT는 스위치 오프 손실이 작은 관계를 가지고 있습니다. 따라서 IGBT는 적용 시스템의 동작 주파수에 따라 적절히 선택되어야 합니다.

400V급 IGBT의 경우 디지털카메라의 스트로브에 적용되는 대전류, 저속의 트랜치 IGBT와 자동차 엔진 점화장치에 사용되는 점화 IGBT등이 있습니다.

600V급의 경우, 110V 전원을 사용하는 산업용 및 일반용 모터 구동용 인버터, 공진 인버터, UPS, SMPS등에 적용되는 단락 회로 정격 IGBT 및 고속 스위칭 IGBT등이 있습니다.

1200V급 IGBT의 경우 220V 3상 전원을 사용하는 용도에 주로 사용되는데, 산업용 모터 구동 인버터에는 모듈 형의 IGBT, 공진 인버터에는 단품 패키지 형태의 IGBT가 주로 사용됩니다.

이 외에도 전동차 구동용, FA, 직류 송전 등에 2500 ~ 6000V급의 IGBT가 적용되고 있습니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기

'기술지식 > 반도체전자전기' 카테고리의 다른 글

대표적인 로직 IC  (0) 2011.11.11
코일과 트랜스  (0) 2011.11.11
발진소자와 필터  (0) 2011.11.11
스위치(Switch)란?  (0) 2011.11.11
릴레이란  (0) 2011.11.11
IGBT(Insulated Gate Bipolar Transistor)는?  (0) 2011.11.11
SCR의 특성곡선  (0) 2011.11.11
SCR의 동작원리  (0) 2011.11.11
사이리스터란  (0) 2011.11.11
여러가지 광전자소자  (0) 2011.11.11
포토다이오드는 광에너지를 전기 에너지로 변환하는 광센서  (0) 2011.11.11
이 댓글을 비밀 댓글로

SCR의 특성곡선

Posted by 노구라
2011. 11. 11. 08:28 기술지식/반도체전자전기
순방향 브레이크오버 전압 (VB)
SCR이 순방향 차단영역에서 순방향 전도영역으로 들어가기 위한 전압을 순방향 브레이크오버 전압이라 합니다. 위의 그림에 나타난 바와 같이 게이트 전류 IG가 증가하면 순방향 브레이크오버 전압은 감소합니다. 게이트 전류 IG = 0일때 순방향 브레이크오버 전압이 최대가 됩니다.
 
유지전류
SCR이 순방향 전도영역에서 동작하기 위한 최소의 애노드 전류를 유지전류라고 합니다.
 
순방향과 역방향 블로킹 영역
순방향 바이어스 전압을 인가했을때 SCR이 오프 상태인 영역을 순방향 블로킹영역이라 하고, 역방향 바이어스 전압을 인가했을때 SCR이 오프 상태인 영역을 역방향 블로킹 영역이라고 합니다.
 
게이트 트리거 전류 (IG)
SCR을 순방향 블로킹영역에서 순방향 전도영역으로 전환하는데 필요한 게이트 전류를 트리거 전류라고 합니다.
 
순방향 전도영역
순방향 바이어스 전압을 인가했을때 SCR이 온 상태인 영역을 순방향 전도영역이라고 합니다.
 
역방향 항복전압
SCR이 애벌런치 영역으로 들어가서 급격히 도통되기 시작하는 애노드와 캐소드 양단의 역방향 전압을 역방향 항복전압이라고 합니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기

'기술지식 > 반도체전자전기' 카테고리의 다른 글

코일과 트랜스  (0) 2011.11.11
발진소자와 필터  (0) 2011.11.11
스위치(Switch)란?  (0) 2011.11.11
릴레이란  (0) 2011.11.11
IGBT(Insulated Gate Bipolar Transistor)는?  (0) 2011.11.11
SCR의 특성곡선  (0) 2011.11.11
SCR의 동작원리  (0) 2011.11.11
사이리스터란  (0) 2011.11.11
여러가지 광전자소자  (0) 2011.11.11
포토다이오드는 광에너지를 전기 에너지로 변환하는 광센서  (0) 2011.11.11
LED(발광 다이오드)란?  (0) 2011.11.11
이 댓글을 비밀 댓글로

SCR의 동작원리

Posted by 노구라
2011. 11. 11. 08:27 기술지식/반도체전자전기

SCR은 위의 그림과 같이 2개의 트랜지스터로 구성된 등가회로로 생각할 수 있습니다. 윗쪽 트랜지스터는 PNP트랜지스터의 역할을 하고 아랫쪽의 트랜지스터는 NPN트랜지스터의 역할을 합니다. 단, 두개의 트랜지스터가 맞붙는 중간층은 서로 공유됩니다.
 
  1) SCR의 턴 온(Turn-on)과정
(1) 아래의 그림과 같이 게이트가 접지되면 Q1은 개방상태에 있게 됩니다. 이때 IB2는 너무 작아서 Q2를 턴 온 상태로 만들지 못합니다. 그러므로 모두가 개방상태에 있게 되고 SCR은 하나의 개방회로가 됩니다.
 
(2) 이 때 아래의 그림과 같이 게이트에 충분히 큰 벌스 전압 VG를 인가하면 Q1이 온 상태가 되고 Q2의 베이스 전류의 증가는 IB2를 더욱 증가되게 합니다. 결과적으로 A-K간 저항은 대단히 작아져서 아래의 그림과 같이 SCR은 하나의 단락회로가 되게 됩니다. 일반적은 SCR은 0.1us ~ 1us의 턴 온 시간을 갖습니다.
 
(3) 위와 같은 게이트에 의한 트리거 뿐만 아니라 온도를 현저하게 증가시키거나 Breakover 전압 이상으로 전압을 증가시킴으로 SCR을 온 상태로 만들수도 있습니다.
(4) 일단 SCR이 온 상태가 되면 아래의 그림과 같이 게이트 신호를 제거하여도 오프 상태로 변화되지는 않습니다. 단지 위에서 소개한 GTO형의 SCR만이 게이트에 음의 펄스를 인가하여 오프상태로 만들 수 있습니다.
  2) SCR의 턴 오프(Turn-off)방법
SCR을 오프 상태로 만들기 위한 방법은 양극전류 차단법과 강제전환법이 있습니다. 양극 전류 차단법은 아래의 그림(a)와 같이 직렬 스위치를 개방시키는 방법과 (b)의 그림과 같이 병렬 스위치를 단락시키는 방법이 있으며 두가지 모두 애노드 전류가 0이 되어 SCR이 오프상태로 됩니다.
강제전환법은 강제로 SCR내의 순방향 전류의 반대방향으로 전류가 흐르도록 하는 방법입니다. 가장 기본적인 회로는 아래의 그림과 같습니다.
위의 그림의 (a)에서와 같이 스위치가 개방되어 있으면 SCR은 도통상태에 있게 됩니다. 이 때 (b)와 같이 스위치를 닫아 순방향 전류와 반대방향으로 전류가 흐르게 되면 SCR은 오프 상태로 됩니다. 보통 SCR의 턴 오프 시간은 수us ~ 수십us 정도 입니다.
사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기

'기술지식 > 반도체전자전기' 카테고리의 다른 글

코일과 트랜스  (0) 2011.11.11
발진소자와 필터  (0) 2011.11.11
스위치(Switch)란?  (0) 2011.11.11
릴레이란  (0) 2011.11.11
IGBT(Insulated Gate Bipolar Transistor)는?  (0) 2011.11.11
SCR의 특성곡선  (0) 2011.11.11
SCR의 동작원리  (0) 2011.11.11
사이리스터란  (0) 2011.11.11
여러가지 광전자소자  (0) 2011.11.11
포토다이오드는 광에너지를 전기 에너지로 변환하는 광센서  (0) 2011.11.11
LED(발광 다이오드)란?  (0) 2011.11.11
이 댓글을 비밀 댓글로

사이리스터란

Posted by 노구라
2011. 11. 11. 08:25 기술지식/반도체전자전기
사이리스터란 p-n-p-n접합의 4층 구조 반도체 소자의 총칭으로서, 역저지 사이리스터, 역도통 사이리스터, 트라이액이 있습니다. 그러나 일반적으로는 SCR(Silicon-Controlled Rectifier Thyristor)이라고 불리는 역저지 3단자 사이리스터를 가리키며, 실리콘 제어 정류소자를 말합니다.

사이리스터는 3개이상의 P-N접합을 1개의 반도체 기판 내에 형성함으로서 전류가 흐르지 않는 오프 상태와 전류가 흐 를 수 있는 온 상태의 2개의 안정된 상태가 있고, 또한 오프 상태에서 온 상태로 또는 온 상태에서 오프 상태로 이행이 가능한 반도체 소자입니다. 사이리스터는 일반적으로 전력용 트랜지스터에 비해 고내압에서 우수한 특성을 나타냅니다.

사이리스터 중에는 다음과 같은 SCR이나 다이액, 트라이액이라고 부르고 있는 것이 있습니다. 일반적으로 사용되는 SCR이나 다이액, 트라이액이라는 명칭은 실제는 상품명으로 정식적인 호칭은 아닙니다.

SCR - 3극 단방향 사이리스터
다이액 - 2극 쌍방향 사이리스터
트라이액 - 3극 쌍방향 사이리스터
 
  사이리스터의 장점
가. 고전압 대전류의 제어가 용이하다.
나. 제어이득이 높고, 게이트 신호가 소멸하여도 온 상태를 유지할 수 있다.
다. 수명은 반영구적으로 신뢰성이 높다. 또 써지 전압 전류에도 강하다.
라. 소형, 경량으로 기기나 장치에의 설치가 용이하다.
 
이러한 장점을 갖고 있는 사이리스터는 가전제품, OA기기, 산업용 기기 등의 전력제어 분야에서 널리 사용되고 있으며, 수십A이하의 중,소 전력 사이리스터만도 여러가지가 있습니다.
  사이리스터의 종류 및 구조
SCR 사이리스터
아래 그림에서 A, K, G는 각각 애노드(anode), 캐소드(cathode), 게이트(gate)를 나타내고, 전류는 항상 애노드에서 캐소드로 흐릅니다.
GTO 사이리스터(Gate-Turn-Off Thyristor)(3단자 턴오프 사이리스터)
GTO사이리스터의 각 단자의 명칭은 SCR 사이리스터와 같고, 전류는 항상 애노드에서 캐소드로 흐릅니다.

게이트에 양(+)전류를 흘리면 ON되고, (-)전류를 흘리면 OFF되는 SCR이며, SCR 사이리스터와 달리 음의 게이트 전류 펄스에 의하여 턴 오프가 가능하며, 일단 오프되면 게이트 전류 없이도 오프 상태를 유지하는 트리거 오프(trigger off) 기능을 가집니다.
 
SCR 사이리스터의 회로도 기호
다이액(Diac)
다이액은 위의 그림에 나타난 바와 같이 PNPN반도체 층이 양방향으로 결합되어, 양방향으로 전류를 흘릴 수 있는 2단자 소자입니다. 캐소드가 없는 대신에 애노드1과 애노드2가 있습니다. 다이액은 두 단자의 극성에 상관없이 다이액 양단의 전압이 일정 전압(브레이크오버 전압이라고 합니다)에 도달하면 도통되고, 전류가 유지전류 이하로 떨어지면 단락됩니다. 도통된 다이액의 전류방향은 인가된 전압에 극성에 따라 결정됩니다.
 
트라이액(Triac)
트라이액은 3단자 교류 스위치의 약어로 이를 개발한 GE社의 상품명에서 기인하여 지금까지 사용되고 있지만 쌍방향 3단자 제어 정류소자로도 불립니다.
SCR의 응용분야
SCR은 계전기 제어, 시간지연 회로, 모터 제어, 전압 조정, 축전지 충전기, 위상제어 등을 포함한 많은 응용분아에 사용되고 있습니다. 최근의 SCR은 1800V, 2000A와같이 높은 정격 전압과 정격 전류로 10MW 정도의 높은 전력을 제어하도록 설계되고 있습니다. 또한 응용주파수 범위는 약 50Khz로 확장되어 유도가열이나 초음파 세척기와 같은 고주파용으로도 많이 응용되고 있습니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기

'기술지식 > 반도체전자전기' 카테고리의 다른 글

코일과 트랜스  (0) 2011.11.11
발진소자와 필터  (0) 2011.11.11
스위치(Switch)란?  (0) 2011.11.11
릴레이란  (0) 2011.11.11
IGBT(Insulated Gate Bipolar Transistor)는?  (0) 2011.11.11
SCR의 특성곡선  (0) 2011.11.11
SCR의 동작원리  (0) 2011.11.11
사이리스터란  (0) 2011.11.11
여러가지 광전자소자  (0) 2011.11.11
포토다이오드는 광에너지를 전기 에너지로 변환하는 광센서  (0) 2011.11.11
LED(발광 다이오드)란?  (0) 2011.11.11
이 댓글을 비밀 댓글로

여러가지 광전자소자

Posted by 노구라
2011. 11. 11. 08:25 기술지식/반도체전자전기
Photo Interrupter

포토인터럽터는 비접촉으로 물체의 유무 및 위치를 감지할 수 있는 소자로 주로 회전체의 회전검출, 물체의 위치검출에 사용되고 있습니다.
포토 인터럽터의 종류
포토인터럽터는 크게 2종류로 구분할 수 있습니다.

투과형 인터럽터는 발광소자와 수광소자를 일정한 간격을 두고 마주보게 놓아 그 사이의 물체의 유무와 위치를 감지하는 방식입니다. 다른하나는 반사형 포토 인터럽터라고 불리는 것으로 발광소자와 수광소자를 평면상 혹은 각도를 두고 발광소자로부터 나온 광을 물체에 반사시켜 그 반사광을 수광소자에서 검출하는 방식입니다.
  Photo coupler
발광 다이오드와 포토 다이오드 또는 포토 트랜지스터를 마주보게 배치하여 소자화 한 것을 포토 커플러라고 합니다. 컴퓨터와 외부 기기의 접속 등 전기적으로 절연할 필요가 있는 곳에 사용됩니다. 실물은 아래와 같으며 일반적인 DIP형 IC와 동일한 형상을 하고 있고 내부에 여러개를 함께 실장 하여 16 핀 패키지로 되는 경우도 있습니다
회로 기호는 일반적으로 아래 그림과 같습니다.
  광도전셀(Photoconductive cell)
광전 변환 소자의 대표적인 것 중에 하나이며, 황화 카드뮴(CdS)셀은 조사된 빛의 강약에 따라 그 양끝의 저항값이 변화하며, 빛이 강할 때는 저항값이 작고 빛이 약할 때는 저항값이 큰 성질이 있습니다.

또한 암흑 상태에서는 거의 절연 상태에 가까운 상태가 됩니다.
사용 방법은 전극간에 전압을 인가하여 빛에 의한 저항 변화를 전류 변화로 바꾸어 외부 회로로 끌어내는 형식으로 되어 있습니다. CdS셀의 구조는 아래의 그림과 같습니다.
CdS셀의 특성은 아래의 그림과 같습니다.
참고로 빛의 단위는 럭스(Lx)이고, 100Lx는 60W의 전등이 약 1m 떨어진 곳의 밝기입니다.
CdS셀은 카메라의 노출계, 가로등의 자동 점멸, 연기의 검지, 광전스위치 등에 응용되고 있습니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기

'기술지식 > 반도체전자전기' 카테고리의 다른 글

코일과 트랜스  (0) 2011.11.11
발진소자와 필터  (0) 2011.11.11
스위치(Switch)란?  (0) 2011.11.11
릴레이란  (0) 2011.11.11
IGBT(Insulated Gate Bipolar Transistor)는?  (0) 2011.11.11
SCR의 특성곡선  (0) 2011.11.11
SCR의 동작원리  (0) 2011.11.11
사이리스터란  (0) 2011.11.11
여러가지 광전자소자  (0) 2011.11.11
포토다이오드는 광에너지를 전기 에너지로 변환하는 광센서  (0) 2011.11.11
LED(발광 다이오드)란?  (0) 2011.11.11
이 댓글을 비밀 댓글로

포토다이오드는 광에너지를 전기 에너지로 변환하는 광센서

Posted by 노구라
2011. 11. 11. 08:24 기술지식/반도체전자전기
포토다이오드는 광에너지를 전기 에너지로 변환하는 광센서의 일종이며 그 구성은 반도체의 PN 접합부에 광검출 기능을 추가한 것으로 다음과 같은 특징이 있습니다.
   
1. 플래너 구조이기때문에 diode특성이 좋고 부하를 걸었을때의 동작특성 이 우수하다
2. 저조도에서 고조도까지 광전류의 직선성이 양호하다
3. 소자간의 광출력의 편차가 동일조립상태에서 적다
4. 응답속도가 빠르다
5. 감도 파장이 넓다
 
  Photo diode의 구조
Photo diode의 동작원리
PN접합에서 P층과 N층의 접합부에는 전위장벽이 생깁니다.
여기에 Eg보다 더 큰 에너지를 갖는 빛(E=hv)이 조사되면 전자는 전도대에 끌어올려지고 전자와 후에 남는 정공이 쌍이되어 형성됩니다.

이렇게 형성된 전자와 정공쌍이 공핍층에서 형성 되었을 경우는 바로 전계에의해 가속되고 전자는 N층으로 정공은 P층으로 이동하게 됩니다.
또 전자와 정공쌍이 P층과 N층에서 발생한 경우에는 P층의 전자와 N층의 정공은 확산하게 되는데, 공핍층에 이르게 되면 전계에 의해 더욱 가속되고 각각 P층, N층에 들어와 전하가 축적되게 됩니다.
이 때 외부의 부하를 단자에 접속하면 빛에너지를 전기 에너지의 형태로 얻을 수 있습니다.
  Photo diode의 특성
V - I 특성
Photo Diode의 V - I 특성은 암(Dark)상태에서는 통상의 정류 Diode와 같습니다.
그러나 Photo Diode에 빛이 조사되면 빛의 세기에 따라 V - I 특성이 -쪽으로 이동하게 됩니다. 이때 단자간을 개방해두면 Voc의 전압이 생기고 단락하면 역방향으로 Isc의 전류가 입사광량에 비례해서 흐르게 됩니다.
Isc는 1/1000 Lux ~1/10000 Lux의 범위에서 상당히 좋은직선성을 가지고 있습니다.
 
분광감도
광원( 태양광 , 형광등 , 텅스텐 전구 , LED , Laser광 등)은 각각 독자의 발광파장을 가지고 있습니다. 그러나 광전자 수광소자는 실리콘 기판으로 소자(CHIP)자체 로써는 가시광 영역부터 근적외선에 이르는 넓은 분광감도를 가지고 있기 때문에 대부분의 광원과의 조합이 가능합니다 .
또한 사용목적에 따라 광학 필터를 붙인 Device도 있으며 가시광 영역만의 감도를 갖는 수광소자와 적외광만의 감도를 갖는 수광소자도 있습니다.
  포토 다이오드의 종류
포토 다이오드는 광 신호를 전기 신호로 변환하는 수광소자의 일종이고, 주로 PIN-PD(PIN-Photodiode)와 APD (Avalanche Photodiode) 가 사용되고 있습니다.
 
PIN Photo diode
PIN Photo diode는 PN접합의 중간에 캐리어가 적어 저항이 큰 진성반도체의 층(1층)이 설치된 구조입니다. 사용시는 역 바이어스 전압을 걸어 i층은 캐리어의 공핍층으로 하고, 내부에 전기장을 만들어 두어야 합니다.

P층쪽에는 창문이 설치되어 있고, 입사한 빛은 P층을 통과하여 1층으로 들어가고, 그 에너지를 흡수 하여 전기장에 따라 정공과 전자가 생깁니다. 이들 케리어는 전기장에 따라 음극과 양극을 향하여 이동하고 외부에 전류가 되어 방출됩니다. PIN구조는 단순한 PN접합보다 i층내의 높은 전기장에서 고속성이 얻어지는 특성을 가지고 있습니다.
APD
APD는 PN접합 중간에 사태(avalanche)층이 있고, 입사한 빛의 여기에 따라서 발생한 캐리어가 높은 전기장에 의해 사태층내에서 원자에 충돌하여 새롭게 홀과 전자의 쌍을 만들고, 그들이 또 새롭게 충돌을 일으키는 과정에서 avalanche(사태)효과를 일으켜 광전류가 증대되는 원리로 작동됩니다.

증대율은 바이어스 전압이 큰 만큼 커지므로, PIN 포토 다이오드보다 높은 바이어스 전압(수십에서 200볼트정도)에서 사용되고 있습니다. APD는 증배에 수반하여 잡음도 많고, PIN 포토 다이오드보다 S/N비가 작지만 출력 전류가 크기 때문에 다음 단의 증폭기가 포함되면 S/N비는 개선 될 수 있습니다.
따라서 고감도 수광을 목적으로 하는 장거리 통신의 경우는 통상 APD가 사용되지만, 광가 입자계, LAN 등의 중,단거리 통신에서는 특별한 전원을 필요로 하지않는 PIN-PD가 많이 사용되고 있습니다.
Photo transistor
Photo transistor는 포토다이오드의 PN접합을 베이스-이미터 접합에 이용한 트랜지스터입니다.

PN접합 부분에 빛을 비추면 빛 에너지에 의해 생긴 정공과 전자가 외부 회로로 나가게 되는데, 입사광에 의해 전자와 정공이 생기면 역전류가 증가하여 입사광에 대응하는 출력전류를 얻을 수 있습니다. 포토 트랜지스터의 경우는 베이스 전극을 빛이 베이스 전류의 대용이기 때문에 전극을 끌어내지 않는 경우가 많습니다.
Photo Transistor의 일반구조는 NPN(또는 PNP)Transistor와 유사한 구조를 가지고 있지만 광전류를 크게 취하기 위하여 수광부인 Base Area를 크게 가지고 있습니다.
 
Photo Transistor의 동작 원리
Photo Transistor의 Base와 Collector는 Photo Diode와 같은 원리로 동작하며 입사된 광에 의하여 Base 단자를 (+) Bias됨으로써 트랜지스터의 기능을 수행합니다. (Ic=IL x hFE)
 
Base단자를 갖는 Photo Transistor의 동작특성
Photo Transistor중 Base 단자를 갖는 소자의 경우 온도에 의한 생성캐리어(컬렉터 입력전류)를 바이패스 시킴으로서 안정된 특성을 얻을 수 있으며 잉여 캐리어를 RB를 통해 방전시킴으로써 응답속도가 향상되는 특성을 가지고 있습니다.

사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기

'기술지식 > 반도체전자전기' 카테고리의 다른 글

코일과 트랜스  (0) 2011.11.11
발진소자와 필터  (0) 2011.11.11
스위치(Switch)란?  (0) 2011.11.11
릴레이란  (0) 2011.11.11
IGBT(Insulated Gate Bipolar Transistor)는?  (0) 2011.11.11
SCR의 특성곡선  (0) 2011.11.11
SCR의 동작원리  (0) 2011.11.11
사이리스터란  (0) 2011.11.11
여러가지 광전자소자  (0) 2011.11.11
포토다이오드는 광에너지를 전기 에너지로 변환하는 광센서  (0) 2011.11.11
LED(발광 다이오드)란?  (0) 2011.11.11
이 댓글을 비밀 댓글로

LED(발광 다이오드)란?

Posted by 노구라
2011. 11. 11. 08:23 기술지식/반도체전자전기

LED(발광 다이오드)는 전류를 직접 빛으로 변경하여 발광하는 반도체 소자입니다. LED의 특징은 부드러운 적색, 녹색과 황생 등의 단색광을 내는 것이며 반도체로 만들어진 것으로 수명이 반영구적입니다.

전기를 빛으로 변경하는 것에는 여러 가지가 있으나, 일반적인 전구도 이에 해당합니다. 전구에 전류를 흐르게 하면 빛이 나고, 이 때에 전류는 전구의 필라멘트를 가열하는 역할을 합니다. 이와 같이 전구는 전기 에너지를 일단 열로 변경한 뒤 빛 에너지로 변경합니다.

LED는 전구와는 달리 전기 에너지를 반도체 안에서 바로 빛으로 변환 할 수가 있습니다. 이러한 이유로 가열하는 과정이 없기 때문에 에너지를 효율적으로 사용할 수 있습니다.

LED의 구조는 일반적인 다이오드와 유사한 PN반도체를 접합한 구조로 되어 있습니다. 이 PN접합에서의 발광이 반도체 안을 통과하여 외부로 나오면 그 빛을 볼 수 있게 됩니다.
 
  LED의 발광 원리
발광 원리를 알기 위해서는 PN접합부에서 무엇이 발생하는 지 점검할 필요가 있습니다. 먼저 반도체에 P형과 N형의 구별이 있는 것은 반도체 안에서 전기를 운반할 수 있는 캐리어의 종류가 다르기 때문입니다. P형 반도체에는 +의 전하를 갖는 정공이, N형 반도체에는 -의 전하를 갖는 전자가 캐리어의 대부분을 차지하고 있습니다.

이 정공과 전자는 서로 반대의 전하를 갖고 있기 때문에 접근하면 흡인력이 작용합니다. 그리고 흡인된 정공과 전자가 충돌하면 에너지를 방출하여 동시에 소멸됩니다. 이 에너지가 바로 빛이 됩니다.

반도체는 주입하는 불순물의 원소에 따라 P형이나 N형이 됩니다. 하나의 반도체 안에 P형과 N형을 만들면, 접합되는 순간 정공과 전자가 충돌합니다. 그러나 그것은 최초에만 하게 되고 상호 소멸된 이후에는 즉시 에너지의 벽이 생겨 그 이상의 소멸을 방지하게 됩니다. 이와 같이 PN접합에서는 정공과 전자는 서로 격리되어 있습니다.
이러한 반도체에 순방향 전압을 가하게 되면 이 전압에 따라 장벽이 약하게 되어 P형에서 N형으로 정공이 흐르게 되고 반대로 N형에서 P형으로 전자가 이동하게 됩니다. 서로의 영역으로 주입된 정공과 전자는 그 즉시 충돌하여 빛 에너지가 되어 소멸합니다.

전하가 이동하면 전류가 되므로 이 ? PN접합을 통하여 반도체 내부에 전류가 흐르게 됩니다.

PN접합에 순방향 전류를 흐르게 하면, 전자와 정공의 발광에 동반되는 소멸이 생기지만 P형 안에서는 정공이, N형 안에서는 전자가 각각 소멸된 양만큼 만들어집니다. 따라서 LED의 발광은 반 영구적입니다. 전자와 정공이 충돌할 때의 에너지를 빛으로 낼 수 있는 것은 특별한 에너지 구조를 갖는 반도체만 가능합니다. 이것은 재료의 종류에 의해 결정되고, 주로 갈륨(Ga)의 화합물에 한정됩니다.

일반적인 다이오드의 재료인 실리콘은 이와 같은 에너지의 구조가 아니기 때문에 전자와 전하의 충돌은 열 에너지가 되게 됩니다.
  LED의 종류
일반 LED
색상의 종류는 적색,녹색,황색이 주류이며 최근에는 청색 발광 다이오드가 개발되어 빛의 3 원색이 가능해저서 풀 컬러의 화상 표시가 가능해졌습니다.

크기 및 색상에따른 여러 가지 종류가 있으며 회로 기호는 다음과 같습니다.
적외선 LED
발광 다이오드의 일종으로 특별하게 적외선 파장의 빛을 발생하도록 만든 발광 다이오드입니다.최근 텔레비전등의 리모콘에서 신호 송신용으로 많이 이용되고 있으며 다양한 크기와 형태가 있습니다
 
7-세그먼트 LED
숫자를 표시하기 위해 발광 다이오드 소자를 여러개 실장 한 것으로7개의 소자로 숫자를 표시할 수 있게 되어있기 때문에 7세그먼트 표시기라고도 불리고 있습니다.실제의 표시기는 사진과 같은 예가 있고 크기와 색상에 따라 여러 가지가 있습니다. 실제의 세그먼트에는 소수점이 추가되어8 세그먼트로 되어 있으며 문자 표시를위한 표시기도 판매되고 있습니다.
  LED의 주요 특성
Power Dissipation (PD)
LED가 소비할 수 있는 최대전력으로 계산방법은 다음과 같습니다.
PD = Forward Current(IF) * Forward Voltage(VF)
 
Continuous Forward Current (IF)
LED에 인가할 수 있는 최대 전류를 나타냅니다.
 
Peak Forward Current (IFP)
Pulse Mode로 LED를 점등시 LED에 인가할 수 있는 최대 전류로 Pulse의 폭과 Duty비에 따라 다릅니다.
 
Operating Temperature (Topr)
LED를 정상적으로 동작시킬 수 있는 주위온도 범위입니다.
 
Storage Temperature (Tstg)
LED를 특성의 변화없이 보관가능한 저장온도 범위입니다.
 
피크발광파장(Peak Wavelength(λP)):
최대 강도로 발광되는 파장을 나타냅니다.
반도체결정의 재료, PN접합을 형성하는불순물의 종류,농도,구조등에 의해 결정됩니다.
스펙트럼 반치폭(Spectrum Half Bandwidth)
최대 발광강도의 1/2의 강도를 가진 두파장 사이의 간격을 말하며, 반치폭이 작을수록 사람의 색감각과의 차이가 적습니다. 사람의 눈은 555nm의 빛에 대한 감도가 아주좋고. 그보다 장파나, 단파로 될수록 감도는 떨어집니다.
 
Radiation Angle or Half Angle
방사각 0도에서의 광도가 1/2이 되는 좌우 방사각을 말하며 LED의 패키지나 Lens형상에 따라 변화합니다.
Luminous Intensity Iv[mcd]
LED를 정해진 방향으로 방사되는 빛의 단위 면적당 광속을 말합니다.
칸델라[cd], 루멘/스테라디안[lm/Sr] 단위를 사용하며 1 cd은 통상 촛불1개의 밝기를 말합니다.
사업자 정보 표시
(주)메카피아 | 노수황 | 서울 금천구 가산디지털1로 145, 2004 (가산동, 에이스하이엔드타워3차) | 사업자 등록번호 : 140-81-29454 | TEL : 02-2624-0896 | Mail : mechapia@mechapia.com | 통신판매신고번호 : 제 2014-서울금천-0444호호 | 사이버몰의 이용약관 바로가기

'기술지식 > 반도체전자전기' 카테고리의 다른 글

코일과 트랜스  (0) 2011.11.11
발진소자와 필터  (0) 2011.11.11
스위치(Switch)란?  (0) 2011.11.11
릴레이란  (0) 2011.11.11
IGBT(Insulated Gate Bipolar Transistor)는?  (0) 2011.11.11
SCR의 특성곡선  (0) 2011.11.11
SCR의 동작원리  (0) 2011.11.11
사이리스터란  (0) 2011.11.11
여러가지 광전자소자  (0) 2011.11.11
포토다이오드는 광에너지를 전기 에너지로 변환하는 광센서  (0) 2011.11.11
LED(발광 다이오드)란?  (0) 2011.11.11
이 댓글을 비밀 댓글로